Air brake (road vehicle)

An air brake or, more formally, a compressed air brake system, is a type of friction brake for vehicles in which compressed airpressing on a piston is used to apply the pressure to the brake pad needed to stop the vehicle. Air brakes are used in large heavy vehicles, particularly those having multiple trailers which must be linked into the brake system, such as trucks, buses, trailers, and semi-trailers, in addition to their use in railroad trains. George Westinghouse first developed air brakes for use in railway service. He patented a safer air brake on March 5, 1872. Westinghouse made numerous alterations to improve his air pressured brake invention, which led to various forms of the automatic brake. In the early 20th century, after its advantages were proven in railway use, it was adopted by manufacturers of trucks and heavy road vehicles.

Truck air actuated disc brake.

Design and function

Air brake systems are typically used on heavy trucks and buses. The system consists of service brakes, parking brakes, a control pedal, and an air storage tank. For the parking brake, there’s a disc or drum brake arrangement which is designed to be held in the ‘applied’ position by spring pressure. Air pressure must be produced to release these “spring brake” parking brakes. For the service brakes (the ones used while driving for slowing or stopping) to be applied, the brake pedal is pushed, routing the air under pressure (approx 100–120 psi or 690–830 kPa or 6.89–8.27 bar) to the brake chamber, causing the brake to be engaged. Most types of truck air brakes are drum brakes, though there is an increasing trend towards the use of disc brakes in this application. The air compressor draws filtered air from the atmosphere and forces it into high-pressure reservoirs at around 120 psi (830 kPa; 8.3 bar). Most heavy vehicles have a gauge within the driver’s view, indicating the availability of air pressure for safe vehicle operation, often including warning tones or lights. A mechanical “wig wag” that automatically drops down into the driver’s field of vision when the pressure drops below a certain point is also common. Setting of the parking/emergency brake releases the pressurized air in the lines between the compressed air storage tank and the brakes, thus allowing the spring actuated parking brake to engage. A sudden loss of air pressure would result in full spring brake pressure immediately.

A compressed air brake system is divided into a supply system and a control system. The supply system compresses, stores and supplies high-pressure air to the control system as well as to additional air operated auxiliary truck systems (gearbox shift control, clutch pedal air assistance servo, etc.).

Supply system

Highly simplified air brake diagram on a commercial road vehicle (does not show all air reservoirs and all applicable air valves).

The air compressor is driven by the engine either by crankshaft pulley via a belt or directly from the engine timing gears. It is lubricated and cooled by the engine lubrication and cooling systems. Compressed air is first routed through a cooling coil and into an air dryerwhich removes moisture and oil impurities and also may include a pressure regulator, safety valve and smaller purge reservoir. As an alternative to the air dryer, the supply system can be equipped with an anti-freeze device and oil separator. The compressed air is then stored in a supply reservoir (also called a wet tank) from which it is then distributed via a four way protection valve into the primary reservoir (rear brake reservoir) and the secondary reservoir (front/trailer brake reservoir), a parking brake reservoir and an auxiliary air supply distribution point. The system also includes various check, pressure limiting, drain and safety valves.

Air brake systems may include a wig wag device which deploys to warn the driver if the system air pressure drops too low.

Control system

The control system is further divided into two service brake circuits, the parking brake circuit, and the trailer brake circuit. The dual service brake circuits are further split into front and rear wheel circuits which receive compressed air from their individual reservoirs for added safety in case of an air leak. The service brakes are applied by means of a brake pedal air valve which regulates both circuits. The parking brake is the air operated spring brake type where its applied by spring force in the spring brake cylinder and released by compressed air via hand control valve. The trailer brake consists of a direct two line system: the supply line (marked red) and the separate control or service line (marked blue). The supply line receives air from the prime mover park brake air tank via a park brake relay valve and the control line is regulated via the trailer brake relay valve. The operating signals for the relay are provided by the prime mover brake pedal air valve, trailer service brake hand control (subject to local heavy vehicle legislation) and the prime mover park brake hand control.

Advantages

Air brakes are used as an alternative to hydraulic brakes which are used on lighter vehicles such as automobiles. Hydraulic brakes use a liquid (hydraulic fluid) to transfer pressure from the brake pedal to the brake shoe to stop the vehicle. Air brakes have several advantages for large multitrailer vehicles:[1]

  • The supply of air is unlimited, so the brake system can never run out of its operating fluid, as hydraulic brakes can. Minor leaks do not result in brake failures.
  • Air line couplings are easier to attach and detach than hydraulic lines eliminating the risk of air getting into hydraulic fluid since there is no hydraulic fluid. Air brake circuits on trailers can be easily attached and removed by operators with appropriate training.
  • Air not only serves as a fluid for transmission of force, but also stores potential energy. So it can serve to control the force applied. Air brake systems include an air tank that stores sufficient energy to stop the vehicle if the compressor fails.
  • Air brakes are effective even with considerable leakage, so an air brake system can be designed with sufficient “fail-safe” capacity to stop the vehicle safely even when leaking.

Driving technique and operator licensing

As air brakes must be operated differently from more common hydraulic systems, most countries require additional training and licensing in order to legally drive any vehicle using an air brake system. The FMCSA requires that drivers who operate a vehicle equipped with air brakes take their driving test in one.[2]

Driving a vehicle with air brakes requires basic knowledge of proper maintenance as well. A driver is required to inspect the air pressurization system prior to driving and make sure all tanks are in working order. In addition, the manner of applying brakes is usually different from regular hydraulic type systems. Pressure is applied slowly and air levels must be monitored at all times as a loss in air pressure will result in brake lockup, aka “dynamiting”. Unlike hydraulic brakes, air brakes must not be pumped repeatedly as the repetitive application and release of air will drain the system prematurely.

References

  1. Bennett, Sean (2010). Heavy Duty Truck Systems, 5th Ed. USA: Cengage Learning. p. 907. ISBN 1435483820.
  2. https://www.fmcsa.dot.gov/content/38395

State of California, Copyright 2003, California Commercial Driver Handbook, Sec. 5

North American Standard Inspection Program, Commercial Vehicle Safety Alliance (12 December 2005). Tractor Protection Systems. Retrieved 7 September 2006 from: Commercial Vehicle Safety Alliance

Brake bleeding Brake bleeding is the procedure performed on hydraulic brake systems whereby the brake lines (the pipes and hoses containing the brake fluid) are purged of any air bubbles. This is necessary because, while the brake fluid is an incompressible liquid, air bubbles are compressiblegas and their presence in the brake system greatly reduces the hydraulic pressure that can be developed within the system. The same methods used for bleeding are also used for purging, where the old fluid is replaced with new fluid, which is necessary maintenance. The process is performed by forcing clean, bubble-free brake fluid through the entire system, usually from the master cylinder(s) to the calipers of disc brakes (or the wheel cylinders of drum brakes), but in certain cases in the opposite direction. A brake bleed screw is normally mounted at the highest point on each cylinder or caliper. There are four main methods of bleeding: The pump and hold method, the brake pedal is pressed while one b...
Emergency brake assist Emergency brake assist (EBA) or brake assist (BA or BAS) is a generic term for an automobile braking technology that increases braking pressure in an emergency. The first application was developed jointly by Daimler-Benz and TRW/LucasVarity. Research conducted in 1992 at the Mercedes-Benz driving simulator in Berlin revealed that more than 90% of drivers fail to brake with enough force when faced with an emergency. By interpreting the speed and force with which the brake pedal is pushed, the system detects if the driver is trying to execute an emergency stop, and if the brake pedal is not fully applied, the system overrides and fully applies the brakes until the anti-lock braking system (ABS) takes over to stop the wheels locking up. This is a lower level of automation than a collision avoidance system, which may initiate braking on its own if the onboard computer detects an imminent collision. Overview Many drivers are not prepared for the relatively high efforts required for ...
Engine braking Engine braking occurs when the retarding forces within an engine are used to slow a vehicle down, as opposed to using additional external braking mechanisms such as friction brakes or magnetic brakes. The term is often confused with several other types of braking, most notably compression-release braking or "jake braking" which uses a different mechanism. Traffic regulations in a large number of countries require trucks to always drive with an engaged gear, which in turn provides a certain amount of engine braking (viscous losses to the engine oil and air pumped through the engine and friction losses to the cylinder walls and bearings) when no accelerator pedal is applied. Type Gasoline engines The term "engine braking" refers to the braking effect that occurs in gasoline engines when the accelerator pedal is released. This results in the throttle valve that controls intake airflow closing and the air flow through the intake becoming greatly restricted (but not cut off complet...
Brake fluid Brake fluid is a type of hydraulic fluid used in hydraulic brake and hydraulic clutch applications in automobiles, motorcycles, light trucks, and some bicycles. It is used to transfer force into pressure, and to amplify braking force. It works because liquids are not appreciably compressible. Most brake fluids used today are glycol-ether based, but mineral oil (Citroën/Rolls-Royce liquide hydraulique minéral (LHM)) and silicone-based (DOT 5) fluids are also available. Brake fluids must meet certain requirements as defined by various standards set by organizations such as the SAE, or local government equivalents. For example, most brake fluid sold in North America is classified by the US Department of Transportation (DOT) under its own ratings such as "DOT 3" and "DOT 4". Their classifications broadly reflect the concerns addressed by the SAE's specifications, but with local details - Alaska and the Azores for example, have different normal temperature and humidity ranges to consi...
Transmission brake A transmission brake or driveline parking brake is an inboard vehicle brake that is applied to the drivetrain rather than to the wheels. Historically, some early cars used transmission brakes as the normal driving brake and often had wheel brakes on only one axle, if that. In current vehicles, these brakes are now rare. They are found in some makes, notably Land Rover, usually for light off-road vehicles. Simple transmission brakes could be found in large vehicles too, such as the 16 inch single disc parking brake used in the M19 Tank Transporter of World War II. The transmission brake is provided solely as a parking brake or handbrake. Normal wheel brakes are still provided for use when driving, drum brakes originally, now almost always disc brakes. Driver's manuals usually caution against using the transmission brake when driving, as it is neither powerful enough nor robust enough and so will not work effectively and may even be damaged by trying to stop a moving vehicle. ...