Blowoff valve

blowoff valve (BOV), dump valve or compressor bypass valve (CBV) is a pressure release system present in most turbocharged engines. Its main purpose is to take the strain off the turbo when the throttle is suddenly released[1].

Characteristics

A typical piston-type dump valve, used in auto racing. Unlike a blowoff valve, this one does not vent to the atmosphere. The small hose at the top is a feed from the intake manifold.

A compressor bypass valve (CBV), also known as a pressure relief valve or diverter valve, is a manifold vacuum-actuated valve designed to release pressure in the intake system of a turbocharged vehicle when the throttle is lifted or closed. This air pressure is re-circulated back into the non-pressurized end of the intake (before the turbo) but after the mass airflow sensor.

A blowoff valve, (sometimes “hooter valve” or BOV) performs the same task but releases the air into the atmosphere instead of recirculating it. This type of valve is typically an aftermarket modification. The blowoff action produces a range of distinctive hissing sounds, depending on the exit design. Some blowoff valves are sold with a trumpet-shaped exit that intentionally amplifies the sound. Some turbocharged vehicle owners may purchase a blowoff valve solely for the auditory effect even when the function is not required by normal engine operation. Motor sports governed by the FIA have made it illegal to vent unmuffled blowoff valves to the atmosphere.

Blowoff valves are used to prevent compressor surge, a phenomenon that readily occurs when lifting off the throttle of an unvented, turbocharged engine. The sound produced is called turbo flutter (the slang term “choo-choo” is sometimes used). When the throttle plate on a turbocharged engine closes, the high pressure air in the intake system is trapped by the throttle and a pressure wave is forced back into the compressor, the resulting collision of pressure waves creates an effect similar to cavitation producing the unique noise.

Operation

When the throttle plate is open, the air pressure on both sides of the piston in the blow-off valve is equal and the spring keeps the piston down.

When the throttle is closed, a vacuum forms in the manifold. This in combination with the pressurized air from the turbocharger moves the piston in the valve up, releasing the pressure into the inlet of the turbo (Recirc.) or the atmosphere (BOV).

A blowoff valve is connected by a vacuum hose to the intake manifold after the throttle plate. When the throttle is closed, the relative manifold pressure drops below atmospheric pressure and the resulting pressure differential operates the blowoff valve’s piston. The excess pressure from the turbocharger is then vented into the atmosphere or recirculated into the intake upstream of the compressor inlet.

Disadvantages

In the case where a mass airflow sensor (MAF) is used and is located upstream from the blowoff valve, the engine control unit (ECU) will inject excess fuel because the atmospherically vented air is not subtracted from the intake charge measurements. The engine then briefly operates with a fuel-rich mixture after each valve actuation.

The rich mixing can lead to hesitation or even stalling of the engine when the throttle is closed, a situation that worsens with higher boost pressures. Occasional events of this type may be only a nuisance, but frequent events can eventually foul the spark plugs and destroy the catalytic converter, as the inefficiently combusted fuel produces soot (excess carbon) and unburned fuel in the exhaust flow can produce soot in the converter and drive the converter beyond its normal operating temperature range.

An alternative method for utilizing both a MAF and a blowoff valve is to have the MAF located down stream between the intercooler and the throttle plate. This is known as Blow-through rather than the traditional Draw-through set up. Care must be taken as to the position of the MAF to prevent damage to the sensitive element. For example, on a SR20DET engine, the MAF must be at least 12″ (30cm) from the throttle plate, and the blowoff valve must be 6″ (15cm) from the MAF sensor. By using a blow-through method, the MAF won’t be affected by the blowoff valve opening as the pressure is vented before the air reaches the MAF.

One approach used to mitigate the problem has been to reduce the boost pressure, which reduces the required venting volume and yields less charge over-calculation by the ECU. The air can also be recirculated back into the intake, a typical stock setup for cars with an upstream MAF sensor. The situation can also be corrected by switching the fuel metering system over to a manifold absolute pressure sensor, a conversion that usually requires a compatible aftermarket ECU or piggy-back fuel controller. The MAP sensor monitors the absolute pressure in the manifold at all times and will correctly detect the change that occurs when the valve vents, allowing the ECU to reduce fuel metering accordingly.

References

  1. Wheeler Dealers, series 14 episode 5
Intercooler An intercooler is any mechanical device used to cool a fluid, including liquids or gases, between stages of a multi-stage compression process, typically a heat exchanger that removes waste heat in a gas compressor. They are used in many applications, including air compressors, air conditioners, refrigerators, and gas turbines, and are widely known in automotive use as an air-to-air or air-to-liquid cooler for forced induction (turbocharged or supercharged) internal combustion engines to improve their volumetric efficiency by increasing intake air charge density through nearly isobaric (constant pressure) cooling.   The intercooler (top) of this 1910 Ingersoll Rand air compressor extracts waste heat between the two compressor stages. Air Compressors Intercoolers are utilized to remove the waste heat from the first stage of two-stage air compressors. Two-stage air compressors are manufactured because of their inherent efficiency. The cooling action of the intercooler i...
Turbocharger A turbocharger, or colloquially turbo, is a turbine-driven forced induction device that increases an internal combustion engine's efficiency and power output by forcing extra air into the combustion chamber. This improvement over a naturally aspirated engine's power output is due to the fact that the compressor can force more air—and proportionately more fuel—into the combustion chamber than atmospheric pressure (and for that matter, ram air intakes) alone. Turbochargers were originally known as turbosuperchargers when all forced induction devices were classified as superchargers. Today the term "supercharger" is typically applied only to mechanically driven forced induction devices. The key difference between a turbocharger and a conventional supercharger is that a supercharger is mechanically driven by the engine, often through a belt connected to the crankshaft, whereas a turbocharger is powered by a turbine driven by the engine's exhaust gas. Compared with a mechanically driven ...
Pressure wave supercharger A pressure wave supercharger (also known as a wave rotor) is a type of supercharger technology that harnesses the pressure waves produced by an internal combustion engine exhaust gas pulses to compress the intake air. Its automotive use is not widespread; the most widely used example is the Comprex, developed by Brown Boveri. Valmet Tractors of Finland were one of the first to use the device when they fitted it to the 411CX engine which powered their 1203 model of 1980. Although it provided a useful increase in performance it was considered too expensive to be incorporated into later models.  Ferrari tested such a device during the development of the 126C Formula One car. The system did not lend itself to as tidy an installation as the alternative twin-turbocharger layout, and the car was never raced in this form. A more successful application was in the RF series diesel enginefound in the 1988 Mazda 626 Capella; ultimately 150,000 Mazda diesel cars were fitted with a Comprex superchar...
Hybrid turbocharger A hybrid turbocharger is an electric turbocharger consisting of a high speed turbine-generator and a high speed electric air compressor. The turbine and compressor are high-speed aeromachines, as in a conventional turbocharger. The electrical motors run at speeds in excess of 120,000 rpm and when used as generators, generate electricity at up to 98.5% electrical efficiency. High electrical efficiency is paramount, because there is no mechanical link between the turbine and compressor. In other words, hybrid turbocharger refers to a series hybrid setup, in which compressor speed and power are independent from turbine speed and power. This design flexibility leads to further improvements in turbine and compressor efficiency, beyond a conventional turbocharger. Basic schematic of an Aeristech Hybrid Turbocharger Aeristech 2009 prototype electric compressor Physical arrangement The electric motors utilize permanent magnets which have a higher efficie...
Turbocharged direct injection Turbocharged direct injection or TDI is a design of turbodiesel engines featuring turbocharging and cylinder-direct fuel injection that was developed and produced by the Volkswagen Group (VW AG). These TDI engines are widely used in all mainstream Volkswagen Group marquesof passenger cars and light commercial vehicles made by the company (particularly those sold in Europe). They are also used as marine enginesin Volkswagen Marine and Volkswagen Industrial Motor applications. TDI engines installed in 2009 to 2015 model year Volkswagen Group cars sold through 18 September 2015 had an emissions defeat device,which activated emissions controls only during emissions testing. The emissions controls were suppressed otherwise, allowing the TDI engines to exceed legal limits on emissions. VW has admitted to using the illegal device in its TDI diesel cars. In many countries, TDI is a registered trademark of Volkswagen AG. The TDI designation has also been used on vehicles powered by Lan...