Brake bleeding

Brake bleeding is the procedure performed on hydraulic brake systems whereby the brake lines (the pipes and hoses containing the brake fluid) are purged of any air bubbles. This is necessary because, while the brake fluid is an incompressible liquid, air bubbles are compressiblegas and their presence in the brake system greatly reduces the hydraulic pressure that can be developed within the system. The same methods used for bleeding are also used for purging, where the old fluid is replaced with new fluid, which is necessary maintenance.

The process is performed by forcing clean, bubble-free brake fluid through the entire system, usually from the master cylinder(s) to the calipers of disc brakes (or the wheel cylinders of drum brakes), but in certain cases in the opposite direction. A brake bleed screw is normally mounted at the highest point on each cylinder or caliper.

There are four main methods of bleeding:[1]

  • The pump and hold method, the brake pedal is pressed while one bleed screw at a time is opened, allowing air to escape. The bleed screw must be closed before releasing the pedal.
  • In the vacuum method, a specialized vacuum pump is attached to the bleeder valve, which is opened and fluid extracted with the pump until it runs clear of bubbles.
  • In the pressure method, a specialized pressure pump is attached to the master cylinder, pressurizing the system, and the bleeder valves are opened one at a time until the fluid is clear of air.
  • In the reverse method, a pump is used to force fluid through the bleeder valve to the master cylinder. This method uses the concept that air rises in liquid and naturally wants to escape up and out of the brake system.

Close-up of a disk brake bleed screw

Vacuum bleeding a disk brake caliper

Pressure bleeding a brake system

If bleeding brakes because of master cylinder replacement the master cylinder is usually “bench bled” before installation. Typically by securing it on the bench, filling it with fluid, connecting fittings and hoses to route fluid from the outlet ports on the master cylinder back to its reservoir, and repeatedly depressing the master cylinder plunger until bubbles are no longer seen coming from the hoses.

Different vehicles have different bleeding patterns. Brakes are usually bled starting with the wheel that is furthest from the master cylinder and working towards the wheel closest to the master cylinder.

References

  1. Brake Bleeding Methods by Phoenix Systems
Transmission brake A transmission brake or driveline parking brake is an inboard vehicle brake that is applied to the drivetrain rather than to the wheels. Historically, some early cars used transmission brakes as the normal driving brake and often had wheel brakes on only one axle, if that. In current vehicles, these brakes are now rare. They are found in some makes, notably Land Rover, usually for light off-road vehicles. Simple transmission brakes could be found in large vehicles too, such as the 16 inch single disc parking brake used in the M19 Tank Transporter of World War II. The transmission brake is provided solely as a parking brake or handbrake. Normal wheel brakes are still provided for use when driving, drum brakes originally, now almost always disc brakes. Driver's manuals usually caution against using the transmission brake when driving, as it is neither powerful enough nor robust enough and so will not work effectively and may even be damaged by trying to stop a moving vehicle. ...
Brake lining Brake linings are the consumable surfaces in brake systems, such as drum brakes and disc brakes used in transport vehicles. Drum shoes with linings History Brake linings were invented by Bertha Benz (the wife of Karl Benz who invented the first patented automobile) during her historic first long-distance car trip in the world in August 1888. The first asbestos brake linings were developed in 1908 by Herbert Frood. Although Frood was the first to implement the use of asbestos brake linings, the heat dissipation properties of the fibres were tested by various scientists, including well known materials chemist Dr Gwilym Price, who did most of his research and testing from Cambridge, United Kingdom and various Cambridge-funded institutes. Structure and function Brake linings are composed of a relatively soft but tough and heat-resistant material with a high coefficient of dynamic friction (and ideally an identical coefficient of static friction) typically mounted to a solid metal ...
Hydraulic brake A hydraulic brake is an arrangement of braking mechanism which uses brake fluid, typically containing glycol ethers or diethylene glycol, to transfer pressure from the controlling mechanism to the braking mechanism. A schematic illustrating the major components of a hydraulic disc brake system. History Fred Duesenberg originated hydraulic brakes on his 1914 racing cars and Duesenberg was the first automotive marque to use the technology on a passenger car in 1921. This braking system could have earned him a fortune if he had patented it. In 1917 Malcolm Loughead (who later changed the spelling of his name to Lockheed) developed a hydraulic brake system. "Lockheed" is a common term for brake fluid in France. The technology was carried forward in automotive use and eventually led to the introduction of the self-energizing hydraulic drum brake system (Edward Bishop Boughton, London England, June 28, 1927) which is still in use today. Construction The most common arrangement ...
Air brake (road vehicle) An air brake or, more formally, a compressed air brake system, is a type of friction brake for vehicles in which compressed airpressing on a piston is used to apply the pressure to the brake pad needed to stop the vehicle. Air brakes are used in large heavy vehicles, particularly those having multiple trailers which must be linked into the brake system, such as trucks, buses, trailers, and semi-trailers, in addition to their use in railroad trains. George Westinghouse first developed air brakes for use in railway service. He patented a safer air brake on March 5, 1872. Westinghouse made numerous alterations to improve his air pressured brake invention, which led to various forms of the automatic brake. In the early 20th century, after its advantages were proven in railway use, it was adopted by manufacturers of trucks and heavy road vehicles. Truck air actuated disc brake. Design and function Air brake systems are typically used on heavy trucks and buses. The system consists...
Engine braking Engine braking occurs when the retarding forces within an engine are used to slow a vehicle down, as opposed to using additional external braking mechanisms such as friction brakes or magnetic brakes. The term is often confused with several other types of braking, most notably compression-release braking or "jake braking" which uses a different mechanism. Traffic regulations in a large number of countries require trucks to always drive with an engaged gear, which in turn provides a certain amount of engine braking (viscous losses to the engine oil and air pumped through the engine and friction losses to the cylinder walls and bearings) when no accelerator pedal is applied. Type Gasoline engines The term "engine braking" refers to the braking effect that occurs in gasoline engines when the accelerator pedal is released. This results in the throttle valve that controls intake airflow closing and the air flow through the intake becoming greatly restricted (but not cut off complet...