Brake fluid

Brake fluid is a type of hydraulic fluid used in hydraulic brake and hydraulic clutch applications in automobiles, motorcycles, light trucks, and some bicycles. It is used to transfer force into pressure, and to amplify braking force. It works because liquids are not appreciably compressible.

Most brake fluids used today are glycol-ether based, but mineral oil (Citroën/Rolls-Royce liquide hydraulique minéral (LHM)) and silicone-based (DOT 5) fluids are also available.[1]

Brake fluids must meet certain requirements as defined by various standards set by organizations such as the SAE, or local government equivalents. For example, most brake fluid sold in North America is classified by the US Department of Transportation (DOT) under its own ratings such as “DOT 3” and “DOT 4“. Their classifications broadly reflect the concerns addressed by the SAE’s specifications, but with local details – Alaska and the Azores for example, have different normal temperature and humidity ranges to consider. Many countries[weasel words] defer explicitly to the SAE specifications, or simply refer to “best practice” which in application would defer to SAE standard. All approved fluids must be colorless or amber to be acceptable for street use in the U.S, except for DOT 5 silicone, which must be purple.

Characteristics

Brake fluids must have certain characteristics and meet certain quality standards for the braking system to work properly.

Boiling point

Brake fluid is subjected to very high temperatures, especially in the wheel cylinders of drum brakes and disk brake calipers. It must have a high boiling point to avoid vaporizing in the lines. This vaporization creates a problem because vapor is highly compressible relative to liquid, and therefore negates the hydraulic transfer of braking force – so the brakes will fail to stop the vehicle.[2]

Quality standards refer to a brake fluid’s “dry” and “wet” boiling points. The wet boiling point, which is usually much lower (although above most normal service temperatures), refers to the fluid’s boiling point after absorbing a certain amount of moisture. This is several (single digit) percent, varying from formulation to formulation. Glycol-ether (DOT 3, 4, and 5.1) brake fluids are hygroscopic (water absorbing), which means they absorb moisture from the atmosphere under normal humidity levels. Non-hygroscopic fluids (e.g. silicone/DOT 5and mineral oil based formulations), are hydrophobic, and can maintain an acceptable boiling point over the fluid’s service life.

Silicone based fluid is more compressible than glycol based fluid, leading to brakes with a spongy feeling.[3] It can potentially suffer phase separation/water pooling and freezing/boiling in the system over time – the main reason single phase hygroscopic fluids are used.

Characteristics of common braking fluids[4][5]
Dry boiling point Wet boiling point Viscosity limit Primary constituent
DOT 2 190 °C (374 °F) 140 °C (284 °F) ? castor oil/alcohol
DOT 3 205 °C (401 °F) 140 °C (284 °F) 1500 mm2/s glycol ether
DOT 4 230 °C (446 °F) 155 °C (311 °F) 1800 mm2/s glycol ether/borate ester
LHM+ 249 °C (480 °F) 249 °C (480 °F) 1200 mm2/s [6] mineral oil
DOT 5 260 °C (500 °F) 180 °C (356 °F) 900 mm2/s silicone
DOT 5.1 260 °C (500 °F) 180 °C (356 °F) 900 mm2/s glycol ether/borate ester

Wet boiling point defined as 3.7% water by volume.

Viscosity

For reliable, consistent brake system operation, brake fluid must maintain a constant viscosity under a wide range of temperatures, including extreme cold. This is especially important in systems with an anti-lock braking system (ABS), traction control, and stability control (ESP), as these systems may use a valve with a time-based approach, rather than measuring pressure or volume to control the amount of fluid transferred.

Corrosion

Brake fluids must not corrode the metals used inside components such as calipers, wheel cylinders, master cylinders and ABS control valves. They must also protect against corrosion as moisture enters the system. Additives (corrosion inhibitors) are added to the base fluid to accomplish this. Silicone is less corrosive to paintwork unlike glycol-ether based DOT fluids.[7]

The advantage of the Citroën LHM mineral oil based brake fluid is the absence of corrosion. Seals may wear out at high mileages but otherwise these systems have exceptional longevity. It cannot be used as a substitute without changing seals due to incompatibility.[8][not in citation given]

Compressibility

Brake fluids must maintain a low level of compressibility, even with varying temperatures to accommodate different environmental conditions. This is important to ensure consistent brake pedal feel. As compressibility increases, more brake pedal travel is necessary for the same amount of brake caliper piston force.

Service and maintenance

“600 m ahead, a 38-km long continuous descent starts. Please check your brakes and add brake cooling water!” A warning sign on a highway in Yunnan, where it drops ca. 1,500 m over a 38 km distance. Water is sprayed or dripped on brake drums for cooling.

Most automotive professionals agree that glycol-based brake fluid, (DOT 3, DOT 4, DOT 5.1) should be flushed, or changed, every 1–2 years under non-racing conditions.[9] Many manufacturers also require periodic fluid changes to ensure reliability and safety. Once installed, moisture diffuses into the fluid through brake hoses and rubber seals and, eventually, the fluid will have to be replaced when the water content becomes too high. Electronic testers and test strips are commercially available to measure moisture content, however moisture test strips were taken off the market because they absorb moisture in the air before they can be used. The corrosion inhibitors also degrade over time. Degraded inhibitors allow corrosion in the braking system. The first metal to corrode is copper. You can determine when it is time to replace brake fluid when copper ions hit 200ppm.[10] New fluid should always be stored in a sealed container to avoid moisture intrusion.

DOT 5 is silicone fluid and the above does not apply. Ideally, silicone fluid should be used only to fill non-ABS systems that have not been previously filled with glycol based fluid. Any system that has used glycol-based fluid will contain moisture; glycol fluid disperses the moisture throughout the system and contains corrosion inhibitors. Silicone fluid does not allow moisture to enter the system, but does not disperse any that is already there, either. A system filled from dry with silicone fluid does not require the fluid to be changed at intervals, only when the system has been disturbed for a component repair or renewal. The United States armed forces have standardised on silicone brake fluid since the 1990s. Silicone fluid is used extensively in cold climates, particularly in Russia and Finland.

A small drop in brake fluid level in the master cylinder reservoir can be “topped up” but if the level consistently drops, the cause should be investigated and repaired. Brake fluid level in the master cylinder will drop as the linings (pads or shoes) wear and the calipers or wheel cylinders extend further to compensate. Overspill from pushing back pistons should be avoided, because glycol based fluid will quickly lift or strip paints and other coatings on contact (it can be removed by quickly washing with water, not wiping). Brake fluid level may also be low because of a leak, which could result in a loss of hydraulic pressure and consequently a significant loss of braking ability. Modern cars have redundant hydraulic circuits (two separate circuits) to ensure against total hydraulic failure.

Brake fluids with different DOT ratings can not always be mixed. DOT 5 should not be mixed with any of these as mixing of glycol with silicone fluid may cause corrosion because of trapped moisture.

Brake fluid is toxic[11] and can damage painted surfaces.[12]

Components

Castor oil-based (pre-DOT, DOT 2)

  • Castor oil
  • Alcohol, usually butanol (red / crimson fluid) or ethanol (yellow fluid) (methanol)

Glycol-based (DOT 3, 4, 5.1)

  • Alkyl ester
  • Aliphatic amine
  • Diethylene glycol
  • Diethylene glycol monoethyl ether
  • Diethylene glycol monomethyl ether
  • Dimethyl dipropylene glycol
  • Polyethylene glycol monobutyl ether
  • Polyethylene glycol monomethyl ether
  • Polyethylene oxide
  • Triethylene glycol monobutyl ether
  • Triethylene glycol monoethyl ether
  • Triethylene glycol monomethyl ether

Silicone-based (DOT 5)

  • Di-2-ethylhexyl sebacate
  • Dimethyl polysiloxane
  • Tributyl phosphate

References

  1.  http://www.peterverdone.com/archive/files/hydraulic%20system%20theory.pdf
  2.  http://www.epicbleedsolutions.com/blog/dot-brake-fluid-vs-mineral-oil/
  3.  http://www.epicbleedsolutions.com/blog/dot-brake-fluid-vs-mineral-oil/
  4.  “49 CFR 571.116 – Standard No. 116; Motor vehicle brake fluids”.
  5.  http://www.epicbleedsolutions.com/blog/dot-brake-fluid-vs-mineral-oil/
  6.  http://www.viscopedia.com/viscosity-tables/substances/automotive-brake-fluid/
  7.  http://www.epicbleedsolutions.com/blog/dot-brake-fluid-vs-mineral-oil/
  8.  http://www.peterverdone.com/archive/files/hydraulic%20system%20theory.pdf
  9.  Bosch Automotive Handbook Archived October 27, 2008, at the Wayback Machine., 7th Edition, ISBN 978-0-7680-1953-7
  10.  [1]
  11.  “MSDS for DOT 3 brake fluid” (PDF). Retrieved 2012-06-04.
  12.  [2]
Windshield washer fluid Windshield washer fluid (also called windshield wiper fluid, wiper fluid, screen wash (in the UK), or washer fluid) is a fluid for motor vehicles that is used in cleaning the windshield with the windshield wiper while the vehicle is being driven. Windshield washer fluid being poured into a vehicle's storage tank Delivery system A control within the car can be operated to spray washer fluid onto the windshield, typically using an electrical pump via jets mounted either beneath the windshield or beneath the wiper blade(s). The windshield wipers are automatically turned on, cleaning dirt and debris off the windshield. Some vehicles use the same method to clean the rear window or the headlights. The first windshield cleaner unit offered for automobiles was in 1936, as an aftermarket option to be installed on cars after they were bought. Washer fluid may sometimes be preheated before being delivered onto the windshield. This is especially desirable in colder climates when a thin...
Gasoline Gasoline (American English), or petrol (British English), is a transparent, petroleum-derived liquid that is used primarily as a fuel in spark-ignited internal combustion engines. It consists mostly of organic compounds obtained by the fractional distillationof petroleum, enhanced with a variety of additives. On average, a 42-gallon barrel of crude oil (159 L) yields about 19 US gallons (72 L) of gasoline when processed in an oil refinery, though this varies based on the crude oil source's assay. The characteristic of a particular gasoline blend to resist igniting too early (which causes knocking and reduces efficiency in reciprocating engines) is measured by its octane rating. Gasoline is produced in several grades of octane rating. Tetraethylleadand other lead compounds are no longer used in most areas to regulate and increase octane-rating, but many other additives are put into gasoline to improve its chemical stability, control corrosiveness, provide fuel system cleaning, and de...
Biofuel A biofuel is a fuel that is produced through contemporary biological processes, such as agriculture and anaerobic digestion, rather than a fuel produced by geological processes such as those involved in the formation of fossil fuels, such as coal and petroleum, from prehistoric biological matter. Biofuels can be derived directly from plants, or indirectly from agricultural, commercial, domestic, and/or industrial wastes. Renewable biofuels generally involve contemporary carbon fixation, such as those that occur in plants or microalgae through the process of photosynthesis. Other renewable biofuels are made through the use or conversion of biomass (referring to recently living organisms, most often referring to plants or plant-derived materials). This biomass can be converted to convenient energy-containing substances in three different ways: thermal conversion, chemical conversion, and biochemical conversion. This biomass conversion can result in fuel in solid, liquid, or gas form. ...
Braking distance Braking distance refers to the distance a vehicle will travel from the point when its brakes are fully applied to when it comes to a complete stop. It is primarily affected by the original speed of the vehicle and the coefficient of friction between the tires and the road surface, and negligibly by the tires' rolling resistance and vehicle's air drag. The type of brake system in use only affects trucks and large mass vehicles, which cannot supply enough force to match the static frictional force. The braking distance is one of two principal components of the total stopping distance. The other component is the reaction distance, which is the product of the speed and the perception-reaction time of the driver/rider. A perception-reaction time of 1.5 seconds, and a coefficient of kinetic friction of 0.7 are standard for the purpose of determining a bare baseline for accident reconstruction and judicial notice; most people can stop slightly sooner under ideal conditions. Braking dist...
Emergency brake assist Emergency brake assist (EBA) or brake assist (BA or BAS) is a generic term for an automobile braking technology that increases braking pressure in an emergency. The first application was developed jointly by Daimler-Benz and TRW/LucasVarity. Research conducted in 1992 at the Mercedes-Benz driving simulator in Berlin revealed that more than 90% of drivers fail to brake with enough force when faced with an emergency. By interpreting the speed and force with which the brake pedal is pushed, the system detects if the driver is trying to execute an emergency stop, and if the brake pedal is not fully applied, the system overrides and fully applies the brakes until the anti-lock braking system (ABS) takes over to stop the wheels locking up. This is a lower level of automation than a collision avoidance system, which may initiate braking on its own if the onboard computer detects an imminent collision. Overview Many drivers are not prepared for the relatively high efforts required for ...