Windshield washer fluid

Windshield washer fluid (also called windshield wiper fluid, wiper fluid, screen wash (in the UK), or washer fluid) is a fluid for motor vehicles that is used in cleaning the windshield with the windshield wiper while the vehicle is being driven. Windshield washer fluid being poured into a vehicle's storage tank Delivery system A control within the car can be operated to spray washer fluid onto the windshield, typically using an electrical pump via jets mounted either beneath the windshield or beneath the wiper blade(s). The windshield wipers are automatically turned on, cleaning dirt and debris off the windshield. Some vehicles use the same method to clean the rear window or the headlights. The first windshield cleaner unit offered for automobiles was in 1936, as an aftermarket option to be installed on cars after they were bought. Washer fluid may sometimes be preheated before being delivered onto the windshield. This is especially desirable in colder climates when a thin layer of ice or frost accumulates on the windshield's surface, because it eliminates the need to manually scrape the windshield or pour warm water on the glass. Although there are a few aftermarket preheat devices available, many automobile makers offer this feature factory installed on at least some of their vehicles. For example, General Motors had begun equipping vehicles with heated washer fluid systems from the factory beginning in 2006 with the Buick Lucerne sedan. The system emits a fine mist of heated water that clears frost without damaging the windshield itself. GM also claims heated washer fluid helps in removing bug splatters and other road accumulation. The company halted the production of these mechanisms after they found that it was prone to start engine fires. A different system patented by BMW first sprays "intensive" washer fluid and then standard washer fluid on to the windscreen. The Citroen C4 Cactus is the first car to have the washer fluid jets built into the wiper arms themselves. Citroen claims this is to reduce the amount of water used. Varieties Windshield washer fluid is sold in many formulations, and some may require dilution before being applied, although most solutions available in North America come premixed with no diluting required. The most common washer fluid solutions are given labels such as "All-Season", "Bug Remover", or "De-icer", and usually are a combination of solvents with a detergent. Dilution factors will vary depending on season, for example in winter the dilution factor may be 1:1, whereas during summer the dilution factor may be 1:10. It is sometimes sold as sachet of crystals, which is also diluted with...

Read

Octane rating

An octane rating, or octane number, is a standard measure of the performance of an engine or aviation fuel. The higher the octane number, the more compression the fuel can withstand before detonating (igniting). In broad terms, fuels with a higher octane rating are used in high performance gasoline engines that require higher compression ratios. In contrast, fuels with lower octane numbers (but higher cetane numbers) are ideal for diesel engines, because diesel engines (also referred to as compression-ignition engines) do not compress the fuel, but rather compress only air and then inject fuel into the air which was heated by compression. Gasoline engines rely on ignition of air and fuel compressed together as a mixture, which is ignited at the end of the compression stroke using spark plugs. Therefore, high compressibility of the fuel matters mainly for gasoline engines. Use of gasoline with lower octane numbers may lead to the problem of engine knocking. Principles The problem: pre-ignition and knocking In a normal spark-ignition engine, the air-fuel mixture is heated due to being compressed and is then triggered to burn rapidly by the spark plug. During the combustion process, if the unburnt portion of the fuel in the combustion chamber is heated (or compressed) too much, pockets of unburnt fuel may self-ignite (detonate) before the main flame front reaches them. Shockwaves produced by detonation can cause much higher pressures than engine components are designed for, and can cause a "knocking" or "pinging" sound. Knocking can cause major engine damage if severe. The most typically used engine management systems found in automobiles today have a knock sensor that monitors if knock is being produced by the fuel being used. In modern computer-controlled engines, the ignition timing will be automatically altered by the engine management system to reduce the knock to an acceptable level. Isooctane as a reference standard   2,2,4-Trimethylpentane (iso-octane) (upper) has an octane rating of 100 whereas n-heptane has an octane rating of 0. Octanes are a family of hydrocarbons that are typical components of gasoline. They are colorless liquids that boil around 125 °C (260 °F). One member of the octane family, isooctane, is used as a reference standard to benchmark the tendency of gasoline or LPG fuels to resist self-ignition. The octane rating of gasoline is measured in a test engine and is defined by comparison with the mixture of 2,2,4-trimethylpentane (iso-octane) and heptane that would have the same anti-knocking capacity as the fuel under test: the percentage, by volume, of 2,2,4-trimethylpentane in that mixture is the octane number of the fuel. For example, gasoline with the same knocking characteristics as a mixture of 90% iso-octane and 10% heptane would have an...

Read

Biodiesel

Biodiesel refers to a vegetable oil- or animal fat-based diesel fuel consisting of long-chain alkyl (methyl, ethyl, or propyl) esters. Biodiesel is typically made by chemically reacting lipids (e.g., vegetable oil, soybean oil, animal fat (tallow)) with an alcohol producing fatty acid esters. Biodiesel is meant to be used in standard diesel engines and is thus distinct from the vegetable and waste oils used to fuel converted diesel engines. Biodiesel can be used alone, or blended with petrodiesel in any proportions. Biodiesel blends can also be used as heating oil. The National Biodiesel Board (USA) also has a technical definition of "biodiesel" as a mono-alkyl ester. Space-filling model of methyl linoleate, or linoleic acid methyl ester, a common methyl ester produced from soybean or canola oil and methanol Space-filling model of ethyl stearate, or stearic acid ethyl ester, an ethyl ester produced from soybean or canola oil and ethanol Blends Biodiesel sample Blends of biodiesel and conventional hydrocarbon-based diesel are products most commonly distributed for use in the retail diesel fuel marketplace. Much of the world uses a system known as the "B" factor to state the amount of biodiesel in any fuel mix: 100% biodiesel is referred to as B100 20% biodiesel, 80% petrodiesel is labeled B20 5% biodiesel, 95% petrodiesel is labeled B5 2% biodiesel, 98% petrodiesel is labeled B2 Blends of 20% biodiesel and lower can be used in diesel equipment with no, or only minor modifications, although certain manufacturers do not extend warranty coverage if equipment is damaged by these blends. The B6 to B20 blends are covered by the ASTM D7467 specification.Biodiesel can also be used in its pure form (B100), but may require certain engine modifications to avoid maintenance and performance problems.Blending B100 with petroleum diesel may be accomplished by: Mixing in tanks at manufacturing point prior to delivery to tanker truck Splash mixing in the tanker truck (adding specific percentages of biodiesel and petroleum diesel) In-line mixing, two components arrive at tanker truck simultaneously. Metered pump mixing, petroleum diesel and biodiesel meters are set to X total volume, transfer pump pulls from two points and mix is complete on leaving pump. Applications Biodiesel can be used in pure form (B100) or may be blended with petroleum diesel at any concentration in most injection pump diesel engines. New extreme high-pressure (29,000 psi) common rail engines have strict factory limits of B5 or B20, depending on manufacturer. Biodiesel has different solvent properties than petrodiesel, and will degrade natural rubber gaskets and hoses in vehicles (mostly vehicles manufactured before 1992), although these tend to wear out naturally and most likely will have already been replaced with FKM, which...

Read

Biofuel

A biofuel is a fuel that is produced through contemporary biological processes, such as agriculture and anaerobic digestion, rather than a fuel produced by geological processes such as those involved in the formation of fossil fuels, such as coal and petroleum, from prehistoric biological matter. Biofuels can be derived directly from plants, or indirectly from agricultural, commercial, domestic, and/or industrial wastes. Renewable biofuels generally involve contemporary carbon fixation, such as those that occur in plants or microalgae through the process of photosynthesis. Other renewable biofuels are made through the use or conversion of biomass (referring to recently living organisms, most often referring to plants or plant-derived materials). This biomass can be converted to convenient energy-containing substances in three different ways: thermal conversion, chemical conversion, and biochemical conversion. This biomass conversion can result in fuel in solid, liquid, or gas form. This new biomass can also be used directly for biofuels. Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources, such as trees and grasses, is also being developed as a feedstock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additiveto increase octane and improve vehicle emissions. Bioethanol is widely used in the United States and in Brazil. Current plant design does not provide for converting the lignin portion of plant raw materials to fuel components by fermentation. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe. In 2010, worldwide biofuel production reached 105 billion liters (28 billion gallons US), up 17% from 2009, and biofuels provided 2.7% of the world's fuels for road transport. Global ethanol fuel production reached 86 billion liters (23 billion gallons US) in 2010, with the United States and Brazil as the world's top producers, accounting together for about 90% of global production. The world's largest biodiesel producer is the European Union, accounting for 53% of all biodiesel production in 2010. As of 2011, mandates for blending biofuels exist in 31 countries at the national level and in 29 states or provinces. The International Energy Agency has a goal for biofuels to meet more than a quarter of world demand for transportation fuels by 2050 to reduce dependence on petroleum and coal.The production of biofuels also led into a flourishing automotive industry, where by 2010, 79% of all cars produced in Brazil were made with a hybrid fuel system of bioethanol and...

Read

Gasoline

Gasoline (American English), or petrol (British English), is a transparent, petroleum-derived liquid that is used primarily as a fuel in spark-ignited internal combustion engines. It consists mostly of organic compounds obtained by the fractional distillationof petroleum, enhanced with a variety of additives. On average, a 42-gallon barrel of crude oil (159 L) yields about 19 US gallons (72 L) of gasoline when processed in an oil refinery, though this varies based on the crude oil source's assay. The characteristic of a particular gasoline blend to resist igniting too early (which causes knocking and reduces efficiency in reciprocating engines) is measured by its octane rating. Gasoline is produced in several grades of octane rating. Tetraethylleadand other lead compounds are no longer used in most areas to regulate and increase octane-rating, but many other additives are put into gasoline to improve its chemical stability, control corrosiveness, provide fuel system cleaning, and determine performance characteristics under intended use. Sometimes, gasoline also contains ethanol as an alternative fuel, for economic, political or environmental reasons. Gasoline used in internal combustion engines has a significant effect on the environment, both in local effects (e.g., smog) and in global effects (e.g., effect on the climate). Gasoline may also enter the environment uncombusted, as liquid and as vapors, from leakage and handling during production, transport and delivery, from storage tanks, from spills, etc. As an example of efforts to control such leakage, many (underground) storage tanks are required to have extensive measures in place to detect and prevent such leaks.  Gasoline contains benzene and other known carcinogens. A Shell gasoline station in Hiroshima, Japan Etymology "Gasoline" is a North America word that refers to fuel for automobiles. The Oxford English Dictionary dates its first recorded use to 1863 when it was spelled "gasolene". The words is a derivation from the word "gas" and the chemical suffixes "-ol" and "-ine" or "-ene". However, the term may also have been influenced by the trademark "Cazeline" or "Gazeline". On 27 November 1862, the British publisher, coffee merchant, and social campaigner John Cassell placed an advertisement in The Times of London: The Patent Cazeline Oil, safe, economical, and brilliant … possesses all the requisites which have so long been desired as a means of powerful artificial light. This is the earliest occurrence of the word to have been found. Cassell discovered that a shopkeeper in Dublin named Samuel Boyd was selling counterfeit cazeline and wrote to him to ask him to stop. Boyd did not reply and changed every ‘C’ into a ‘G’, thus coining the word "gazeline". "Petrol" is used in most Commonwealth countries. "Petrol" was first used as the name of a refined petroleum product around...

Read

12