Tire-pressure monitoring system

A tire-pressure monitoring system (TPMS) is an electronic system designed to monitor the air pressure inside the pneumatic tires on various types of vehicles. TPMS report real-time tire-pressure information to the driver of the vehicle, either via a gauge, a pictogram display, or a simple low-pressure warning light. TPMS can be divided into two different types – direct (dTPMS) and indirect (iTPMS). TPMS are provided both at an OEM (factory) level as well as an aftermarket solution. The target of a TPMS is avoiding traffic accidents, poor fuel economy, and increased tire wear due to under-inflated tires through early recognition of a hazardous state of the tires. History Initial adoption Due to the influence tire pressure has on vehicle safety and efficiency, tire-pressure monitoring (TPM) was first adopted by the European market as an optional feature for luxurypassenger vehicles in the 1980s. The first passenger vehicle to adopt TPM was the Porsche 959 in 1986, using a hollow spoke wheel system developed by PSK. In 1996 Renault used the Michelin PAX system for the Scenic and in 1999 the PSA Peugeot Citroën decided to adopt TPM as a standard feature on the Peugeot 607. The following year (2000), Renault launched the Laguna II, the first high volume mid-size passenger vehicle in the world to be equipped with TPM as a standard feature. In the United States, TPM was introduced by General Motors for the 1991 model year for the Corvette in conjunction with Goodyear run-flat tires. The system uses sensors in the wheels and a driver display which can show tire pressure at any wheel, plus warnings for both high and low pressure. It has been standard on Corvettes ever since. Firestone recall and legal mandates The Firestone recall in the late 1990s (which was linked to more than 100 deaths from rollovers following tire tread-separation), pushed the United States Congress to legislate the TREAD Act. The Act mandated the use of a suitable TPMS technology in all light motor vehicles (under 10,000 pounds), to help alert drivers of under-inflation events. This act affects all light motor vehicles sold after September 1, 2007. Phase-in started in October 2005 at 20%, and reached 100% for models produced after September 2007. In the United States, as of 2008 and the European Union, as of November 1, 2012, all new passenger car models (M1) released must be equipped with a TPMS. From November 1, 2014, all new passenger cars sold in the European Union must be equipped with a TPMS. For N1 vehicles, TPMS are not mandatory, but if a TPMS is fitted, it must comply with the regulation. On July 13, 2010,...

Read

Run-flat tire

A run-flat tire is a pneumatic vehicle tire that is designed to resist the effects of deflation when punctured, and to enable the vehicle to continue to be driven at reduced speeds - under 56 mph (90 km/h) - and for limited distances - generally between 10 mi (16 km) to 50 mi (80 km), depending on the type of tire. Cutaway model of MOWAG Piranha tire Technologies There are three basic technologies currently available, described below. Self-supporting The origins of the commercial self-supporting run-flat tire started in 1935 with a tire that had a fabric inner tire. The tire was advertised as a protection against blow outs, a common and dangerous occurrence in the 1930s. In 1934, Michelin introduced a tire that was based on technology developed for local commuter trains and trolleys. It had a safety rim inside the tire which if punctured would run on a special foam lining. The tire was sold for military use and for specialized vehicles like bank armoured cars. It was advertised as "semi-bullet proof". While the tire performed as advertised it was far too expensive to be a feasible option for most private automobile users. In 1958, Chrysler teamed with Goodyear Tire and Rubber Company to offer Captive Air run-flat tires using an interlining to carry the weight. In 1972 Dunlop launched the Total Mobility Tyre (later Denovo) "fail-safe" wheel and tire system that became optional equipment on the Rover P6 3500 in 1973, and by 1983 evolved into the TD/Denloc which became standard equipment across the whole Austin Metro range. Most recently, Bridgestone and Pirelli run-flat tires are supplied on some new model BMW cars. The automaker promoted these as a safety feature and as an alternative to carrying a spare tire. Self-supporting run-flat tires are now common on light trucks and passenger cars and typically provide for the vehicle to drive for 50 miles (80 km) at around 50 miles per hour (80 km/h). However, if the tires are subject to this kind of misuse, wheels may become damaged in the process, and repair may be impossible or unsafe, especially if the tire is punctured in the sidewall or at the edge of the tread. These tires carry a 20 to 40 percent weight penalty over similar standard tires. The thicker sidewall also means higher rolling resistance, which reduces the vehicle's fuel economy. Self-sealing These tires contain an extra lining within the tire that self-seals in the event of a small hole due to a nail or screw. In this way, the loss of air is prevented from the outset such that the tire is either permanently self-repairing or at least loses air very slowly. There are also a number of retrofitted tire sealants which act in...

Read

Airless tire

Airless tires, or non-pneumatic tires (NPT), are tires that are not supported by air pressure. They are used on some small vehicles such as riding lawn mowers and motorized golf carts. They are also used on heavy equipment such as backhoes, which are required to operate on sites such as building demolition, where risk of tire punctures is high. Tires composed of closed-cell polyurethane foam are also made for bicycles and wheelchairs.   12-16.5 Mk1 Croc Tyre with rim center fitted Advantages The main advantage of airless tires is that they cannot go flat. Other advantages are that airless tires will need to be replaced less often resulting in a savings. Heavy equipment outfitted with airless tires will be able to carry more weight and engage in more rugged activities. Airless bicycle tires can be easy to install. Airless lawn mower tires come in several varieties. Disadvantages Airless tires generally have higher rolling resistance and provide somewhat less suspension than similarly shaped and sized pneumatic tires. Other problems for airless heavy equipment tires include dissipating the heat buildup that occurs when they are driven. Airless tires are often filled with compressed polymers (plastic), rather than air or can be a solid molded product. Airless tires are attractive to cyclists, as bicycle tires are much more vulnerable to punctures than motor vehicle tires. The drawbacks to airless tires depend on the use. Heavy equipment operators who use machinery with solid tires will complain of fatigue whereas lawn mowers that use solid or airless tires have no drawbacks. Bicycle riders who use airless tires may complain that the tire is harder than a comparable pneumatic tire. Only anecdotal evidence exists that airless tires may cause broken spokes on a bicycle wheel. Any airless tire will be heavier than the rubber tire it is meant to replace; however, many rubber pneumatic tires are also heavy. Rubber tires vary in rolling resistance and an airless tire or solid insert may only marginally increase rolling resistance if at all. Installation of airless tires depends on the use. Heavy equipment will need special equipment to mount but an airless bicycle tire can be mounted with little or no effort. Solid airless lawnmower tires come pre-installed on the wheel allowing quick installation. Examples Mobike tire Many bicycle-sharing systems use these tires to reduce maintenance. In 2005, Michelin started developing an integrated tire and wheel combination, the "Tweel" (derived from "tire" and "wheel," which, as the name "Tweel" suggests, are combined into one new, fused part), which operates entirely without air. Michelin claims its "Tweel" has load carrying, shock absorbing, and handling characteristics that...

Read

Tweel

The Tweel (a portmanteau of tire and wheel) is an airless tire design concept developed by the French tire company Michelin. Its significant advantage over pneumatic tires is that the Tweel does not use a bladder full of compressed air, and therefore it cannot burst, leak pressure, or become flat. Instead, the Tweel assembly's inner hub connects to flexible polyurethane spokes which are used to support an outer rim and these engineered compliant components assume the shock-absorbing role provided by the compressed air in a traditional tire. The Tweel airless tire design Design The Tweel consists of a band of conventional tire rubber with molded tread, a shear beam just below the tread that creates a compliant contact patch, a series of energy-absorbing polyurethane spokes, and an integral inner rim structure. Both the shear beam and the polyurethane spokes can be designed to provide a calibrated directional stiffness in order that design engineers are able to control both how the Tweel handles and how it handles loads. The inner hub structure may be either rigid or compliant, depending on the application requirements, and as such may contain a matrix of deformable plastic structures that flex under load and subsequently return to their original shape. By varying the thickness and size of the spokes, Michelin can manipulate the design elements to engineer a wide array of ride and handling qualities. The tread can be as specialized as any of today's tires and is replaceable when worn. Benefits and drawbacks Potential benefits of the Tweel include not only the obvious safety and convenience of never having flat tires, but also, in automotive applications, the Tweel airless tire has the potential to be able to brake better - a significant performance compromise that is inherent to pneumatic tires. Unlike a pneumatic tire, a Tweel can be designed to have high lateral stiffness while simultaneously having low vertical stiffness. This can be achieved because, in the design elements of a Tweel, the vertical and lateral stiffness are not inseparably linked and can thus be optimized independently. Because there is no air bladder under the tread, tread patterns can, if desired, even incorporate water evacuation through holes in the design thus eliminating or significantly reducing hydroplaning. Michelin expects the tread to last two to three times as long as a conventional tire. Because the tread rubber around the outer circumference is replaceable when worn (as opposed to disposing of a whole worn tire), the potential environmental impact of a Tweel airless tire can be less than that of a conventional pneumatic tire. Tweel...

Read

Artillery wheel

The artillery wheel was developed for use on gun carriages when it was found that the lateral forces involved in horse artillery manoeuvres caused normally constructed cart wheels to collapse. Rather than having its spokes mortised into a wooden nave (hub), it has them fitted together (mitred) then bolted into a metal nave. Its tyre is shrunk onto the rim in the usual way but it is also bolted on for security. A normal wagon wheel is dished so that in its lowest part, the spokes are perpendicular to the ground thus supporting the weight (with the axle not truly horizontal but angled downward toward the outside about 5 degrees). This is not done with artillery wheels.    Artillery wheel Motor vehicles 1927 Ford T with artillery wheels When higher speeds and consequently higher lateral forces were attained with the introduction of motor vehicles, the artillery wheel was used in those too. By the 1920s, motor cars used wheels that looked at a glance like artillery wheels but which were of forged steel or welded from steel pressed sections. These too were usually called artillery wheels. Joseph Sankey's pressed steel artillery wheels 1908 aftermarket pressed and welded detachable steel wheel on a 1907 Austin After training as an engineer, Joseph Sankey founded a major tea tray producer. A pioneer motorist, Sankey became personal friends with Herbert Austin, becoming a supplier of sheet steel components to the industry as a result. By 1914, Joseph Sankey and Sons Ltd. supplied sheet steel bodies to Austin, Daimler, Humber, Rover, Star and Argyll. As a result of complaints from motor manufacturers about the wooden wheels on these early cars disintegrating upon touching any roadside kerb, In 1908 Sankey with his works manager, Wingfield Burton, developed and patented the first pressed-steel and welded detachable motor car wheel. Production started in 1908, with customers including Herbert Austin and, later, William Morris. In addition to his original factory at Bilston a new plant was established near Wellington, Shropshire, which was devoted to wheel production. In 1920, GKN purchased steel company John Lysaght and their subsidiary, Joseph Sankey and Sons Ltd. By that time the plant was supplying wheels to many UK manufacturers. Wire wheels By the late 1920s the inadequacies of artillery wheels had brought about their sweeping replacement by the more expensive wire wheels. References a b c d e f g h "Making the most of it Or – are you driving a GKN?". Motor. 10 May 1969. pp. 58–60. Edgar Jones, A History of GKN: Volume 2: The Growth of a Business, 1918-1945, Macmillan, London, 1990 ISBN 9781349096664

Read

Alloy wheel

In the automotive industry, alloy wheels are wheels that are made from an alloy of aluminium or magnesium. Alloys are mixtures of a metal and other elements. They generally provide greater strength over pure metals, which are usually much softer and more ductile. Alloys of aluminium or magnesium are typically lighter for the same strength, provide better heat conduction, and often produce improved cosmetic appearance over steel wheels. Although steel, the most common material used in wheel production, is an alloy of iron and carbon, the term "alloy wheel" is usually reserved for wheels made from nonferrous alloys. The earliest light-alloy wheels were made of magnesium alloys. Although they lost favor on common vehicles, they remained popular through the 1960s, albeit in very limited numbers. In the mid-to-late 1960s, aluminum-casting refinements allowed the manufacture of safer wheels that were not as brittle. Until this time, most aluminum wheels suffered from low ductility, usually ranging from 2-3% elongation. Because light-alloy wheels at the time were often made of magnesium (often referred to as "mags"), these early wheel failures were later attributed to magnesium's low ductility, when in many instances these wheels were poorly cast aluminum alloy wheels. Once these aluminum castingimprovements were more widely adopted, the aluminum wheel took the place of magnesium as low cost, high-performance wheels for motorsports. Alloy wheel on a passenger car Characteristics Alcoa's heavy-duty alloy wheel, for buses and trucks. Lighter wheels can improve handling by reducing unsprung mass, allowing suspension to follow the terrain more closely and thus improve grip, however not all alloy wheels are lighter than their steel equivalents. Reduction in overall vehicle mass can also help to reduce fuel consumption. Better heat conduction and a more open wheel design can help dissipate heat from the brakes, which improves braking performance in more demanding driving conditions and reduces the chance of diminished brake performance or even failure due to overheating. An aluminum alloy wheel designed to recall the crossed spokes of a wire wheel Alloy wheels are also purchased for cosmetic purposes although the cheaper alloys used are usually not corrosion-resistant. Alloys allow the use of attractive bare-metal finishes, but these need to be sealed with paint or wheel covers. Even if so protected the wheels in use will eventually start to corrode after 3 to 5 years but refurbishment is now widely available at a cost. The manufacturing processes also allow intricate, bold designs. In contrast, steel wheels are usually pressed from sheet metal, and then welded together (often leaving unsightly bumps) and must be painted to avoid corrosion and/or hidden with wheel covers/hub caps. Alloy wheels are prone to galvanic corrosion, which...

Read

Wheel

A wheel is a circular component that is intended to rotate on an axle bearing. The wheel is one of the key components of the wheel and axle which is one of the six simple machines. Wheels, in conjunction with axles, allow heavy objects to be moved easily facilitating movement or transportation while supporting a load, or performing labor in machines. Wheels are also used for other purposes, such as a ship's wheel, steering wheel, potter's wheel and flywheel. Common examples are found in transport applications. A wheel greatly reduces friction by facilitating motion by rolling together with the use of axles. In order for wheels to rotate, a moment needs to be applied to the wheel about its axis, either by way of gravity or by the application of another external force or torque. Using the wheel, Sumerians invented a contraption that spins clay as a potter shapes it into the desired object. Three wheels on an antique tricycle The earliest wheels were made of a solid piece of wood. Etymology The English word wheel comes from the Old English word hweol, hweogol, from Proto-Germanic *hwehwlan, *hwegwlan, from Proto-Indo-European *kwekwlo-, an extended form of the root *kwel- "to revolve, move around". Cognates within Indo-European include Icelandic hjól "wheel, tyre", Greek κύκλος kúklos, and Sanskrit chakra, the latter two both meaning "circle" or "wheel". History The invention of the wheel falls into the late Neolithic, and may be seen in conjunction with other technological advances that gave rise to the early Bronze Age. This implies the passage of several wheel-less millennia even after the invention of agriculture and of pottery, during the Aceramic Neolithic. 4500–3300 BCE: Copper Age, invention of the potter's wheel; earliest wooden wheels (disks with a hole for the axle); earliest wheeled vehicles, domestication of the horse 3300–2200 BCE: Early Bronze Age 2200–1550 BCE: Middle Bronze Age, invention of the spoked wheel and the chariot A depiction of an onager-drawn cart on the Sumerian "battle standard of Ur" (c. 2500 BC) The Halaf culture of 6500–5100 BCE is sometimes credited with the earliest depiction of a wheeled vehicle, but this is doubtful as there is no evidence of Halafians using either wheeled vehicles or even pottery wheels. Precursors of wheels, known as "tournettes" or "slow wheels", were known in the Middle East by the 5th millennium BCE (one of the earliest examples was discovered at Tepe Pardis, Iran, and dated to 5200–4700 BCE). These were made of stone or clay and secured to the ground with a peg in the center, but required significant effort to turn. True (freely-spinning) potter's wheels were apparently in use in Mesopotamia by 3500 BCE and possibly as early as 4000 BCE, and the oldest surviving example, which was found in Ur (modern day Iraq), dates to approximately 3100 BCE. The first evidence of wheeled vehicles appears in the second...

Read