Electric park brake

Electric park brakes (EPB) are used on passenger vehicles to hold the vehicle stationary on grades and flat roads. This was accomplished traditionally using a manual parking brake. With electric park brakes, the driver activates the holding mechanism with a button and the brake pads are then electrically applied onto the rear brakes.[1] This is accomplished by an electronic control unit (ECU) and an actuator mechanism. There are two mechanisms that are currently in production: 1. Cable puller systems and 2. Caliper integrated systems.[2] EPB systems can be considered a subset of Brake-by-wire technology.

First installed in the 2002 BMW 7 Series (E65), electric park brakes have since appeared in a number of vehicles.

Electric park brake in the center console in a Volkswagen Touran

Functionality

Apart from performing the basic vehicle holding function required of park brakes, the EPB systems provide other functions like automatic release of the park brakes when the driver presses the accelerator, and re-clamping using additional force on detection of vehicle motion.[2] Further, the hill-hold function, which applies brakes to prevent roll-back when pulling away on a gradient, can also be implemented using the EPB.[3]

Implementation

The implementation of the control logic for the actuators is carried out by either using a stand alone ECU[4] or by integrating it in the ECU for electronic stability control[5]

Standards

The design of the electric park brakes should be compliant with:

  • FMVSS 105[6]
  • FMVSS 135[7]
  • ECE 13H[8]

References

  1. http://www.volkswagenag.com/content/vwcorp/info_center/en/publications/2012/11/VIAVISION_No_09_November_2012.bin.html/binarystorageitem/file/VIAVISION_GB.pdf
  2. a b http://www.sae.org/events/bce/presentations/2009/jscheon.pdf
  3. http://www.volkswagen.co.uk/technology/parking-and-manoeuvring/electronic-parking-brake
  4.  http://www.trw.com/braking_systems/electric_park_brake
  5.  http://www.vda.de/en/publikationen/publikationen_downloads/detail.php?id=1163
  6.  http://www.fmcsa.dot.gov/rules-regulations/administration/fmcsr/fmcsrruletext.aspx?reg=571.105
  7.  http://www.fmcsa.dot.gov/rules-regulations/administration/fmcsr/fmcsrruletext.aspx?reg=571.135
  8.  http://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/R13hr2e.pdf
Brake bleeding Brake bleeding is the procedure performed on hydraulic brake systems whereby the brake lines (the pipes and hoses containing the brake fluid) are purged of any air bubbles. This is necessary because, while the brake fluid is an incompressible liquid, air bubbles are compressiblegas and their presence in the brake system greatly reduces the hydraulic pressure that can be developed within the system. The same methods used for bleeding are also used for purging, where the old fluid is replaced with new fluid, which is necessary maintenance. The process is performed by forcing clean, bubble-free brake fluid through the entire system, usually from the master cylinder(s) to the calipers of disc brakes (or the wheel cylinders of drum brakes), but in certain cases in the opposite direction. A brake bleed screw is normally mounted at the highest point on each cylinder or caliper. There are four main methods of bleeding: The pump and hold method, the brake pedal is pressed while one b...
Brake wear indicator A Brake wear indicator is used to warn the user and/or owner of a vehicle that the brake pad is in need of replacement. The main area of use for this is on motor vehicles with more than three wheels. However brake wear indicators are also useful for brake pads in industrial applications, including wind turbines and cranes. This article refers to disc brakes as an example, but the principle is the same for other types of friction brakes. Types of indicators There are different types of wear indicators for brake pads: Ocular inspection: A cut is made in the pad material to the depth where it shall be replaced. Requires manual inspection of the pads. Mechanical: A metal plate is designed to scratch the brake disk causing a noise when the pad has worn down to the desired level. Electrical: A metal body is embedded in the pad material that comes in contact with the rotor when the desired wear level is reached. This will light an indicator in the instrument cluster. Positi...
Hydraulic brake A hydraulic brake is an arrangement of braking mechanism which uses brake fluid, typically containing glycol ethers or diethylene glycol, to transfer pressure from the controlling mechanism to the braking mechanism. A schematic illustrating the major components of a hydraulic disc brake system. History Fred Duesenberg originated hydraulic brakes on his 1914 racing cars and Duesenberg was the first automotive marque to use the technology on a passenger car in 1921. This braking system could have earned him a fortune if he had patented it. In 1917 Malcolm Loughead (who later changed the spelling of his name to Lockheed) developed a hydraulic brake system. "Lockheed" is a common term for brake fluid in France. The technology was carried forward in automotive use and eventually led to the introduction of the self-energizing hydraulic drum brake system (Edward Bishop Boughton, London England, June 28, 1927) which is still in use today. Construction The most common arrangement ...
Transmission brake A transmission brake or driveline parking brake is an inboard vehicle brake that is applied to the drivetrain rather than to the wheels. Historically, some early cars used transmission brakes as the normal driving brake and often had wheel brakes on only one axle, if that. In current vehicles, these brakes are now rare. They are found in some makes, notably Land Rover, usually for light off-road vehicles. Simple transmission brakes could be found in large vehicles too, such as the 16 inch single disc parking brake used in the M19 Tank Transporter of World War II. The transmission brake is provided solely as a parking brake or handbrake. Normal wheel brakes are still provided for use when driving, drum brakes originally, now almost always disc brakes. Driver's manuals usually caution against using the transmission brake when driving, as it is neither powerful enough nor robust enough and so will not work effectively and may even be damaged by trying to stop a moving vehicle. ...
Engine braking Engine braking occurs when the retarding forces within an engine are used to slow a vehicle down, as opposed to using additional external braking mechanisms such as friction brakes or magnetic brakes. The term is often confused with several other types of braking, most notably compression-release braking or "jake braking" which uses a different mechanism. Traffic regulations in a large number of countries require trucks to always drive with an engaged gear, which in turn provides a certain amount of engine braking (viscous losses to the engine oil and air pumped through the engine and friction losses to the cylinder walls and bearings) when no accelerator pedal is applied. Type Gasoline engines The term "engine braking" refers to the braking effect that occurs in gasoline engines when the accelerator pedal is released. This results in the throttle valve that controls intake airflow closing and the air flow through the intake becoming greatly restricted (but not cut off complet...