Hydrolastic

Hydrolastic is a type of space-efficient automotive suspension system used in many cars produced by British Motor Corporation (BMC) and its successor companies.

Invented by famous British rubber engineer Alex Moulton, and first used on the 1962 BMC project ADO16 under designer Alec Issigonis (of Mini fame), later to be launched as the Morris 1100.[1]

Description

The system replaces the separate springs and dampers of a conventional suspension system with integrated, space efficient, fluid filled displacer units which are interconnected between the front and rear wheels on each side of the vehicle.

Each displacer unit contains a rubber spring, and damping is achieved by the displaced fluid passing through rubber valves. The displaced fluid passes to the displacer of the paired wheel, thus providing a dynamic interaction between front and rear wheels. When a front wheel encounters a bump fluid is transferred to the corresponding rear displacer then lowers the rear wheel, hence lifting the rear, minimising pitch associated with the bump.[2] Naturally the reverse occurs when it is a rear wheel that encounters a bump. This effect is particularly good on small cars as their shorter wheelbases are more affected by pitching.

However, the key improvement over conventional suspension is that the front/rear interconnection allows the vehicle to be stiffer in roll than in pitch. Hence it is possible to design a compliant suspension – giving a comfortable ride – without suffering a penalty in terms of excessive roll when cornering. In roll, there is no transference of fluid from the displacers, and hence its internal pressure rises. The only “give” in the suspension occurs because of the inherent flexibility of the rubber springs. These are naturally stiff.

In pitch, as described above, fluid is displaced front to rear, and hence the pressure in the system stays effectively the same, and thus the suspension is much more compliant.

The design of the displacer units, and the way in which they are mounted means that as the suspension is compressed, the (roughly spherical) displacer deforms, and hence presents a larger area to the mounting plates. The pressure in the system is thus acting over a larger area, and hence applying additional force. This gives the suspension a sharply rising rate even in pitch, so that there is a strong tendency to return to equilibrium. Without this rising rate there would be no effective pitch resistance at all.

Cars with Hydrolastic suspension do, however, have a marked tendency to squat under acceleration, and to dive under braking (and for the rear end to sag under heavy loads). This requires clever design of the suspension components to minimise these forces, and to maximise the rising rate characteristic.

Influences

Jon Pressnell suggests in his book that the hydropneumatic suspension of the Citroën DS motivated Issigonis and Moulton, who were at the time of the launch of the DS working on a rubber and fluid suspension system themselves. Pressnell also suggests that the complexity of the Citroën system encouraged Moulton to develop a much simpler system.[3]

In a magazine interview for ‘CAR’ magazine in the late 1980s, Dr Moulton stated that he and Issigonis had also studied the Citroën 2CV in the 1950s, which featured fore/aft interconnected steel springs. They particularly wished to address the comical lack of roll stiffness of that car with the system that they were designing.

Hydragas

Hydragas is a type of automotive suspension system used in many cars produced by British Leyland and its successor companies.

Invented by British automotive engineer Alex Moulton, Hydragas is an evolution of the previous Hydrolastic system. Manufactured under licence by BTR AVS under the Dunlop brand at the historic Holbrook lane site. It was first introduced in 1973 in the Austin Allegro and was later fitted to the 1975 Princess and its successor, the 1982 Austin Ambassador. Both systems attempt to address the ride-handling compromise of car suspension by interconnecting the suspension of the front and rear of the car in some way. Hydragas attempted to perform the same function and advantages as the hydropneumatic system developed by Citroën, but without its attendant complexity.

The heart of the system is the displacer units, which are pressurised spheres containing nitrogen gas. These replace the conventional steel springs of a regular suspension design. The means for pressurising the gas in the displacers is done by pre-pressurising a hydraulic fluid, and then connecting the displacer to its neighbour on the other axle. This is unlike the Citroën system, which uses hydraulic fluid continuously pressurised by an engine-driven pump and regulated by a central pressure vessel.

Despite early problems (the Allegro version of Hydragas was found seriously wanting), it was gradually developed into an effective and efficient alternative to steel springs on later BL/Rover Group models such as the Austin Metro and MGF. The Metro originally featured independent Hydragas units, with no fore/aft interconnection (the pipework was deleted on cost grounds, against the advice of Moulton). While the Metro was praised for its handling, and offered a significant improvement in ride quality over the Mini, it was criticised for its tendency to pitch and bounce on uneven roads – precisely the characteristics the interconnection was intended to remove. The revised Rover Metro had its suspension interconnected and went on to receive plaudits for the quality of its ride.

The Austin Maxi was the only in production car to feature both systems. The Maxi featured 1100 designed Hydrolastic units with the regulator valve fitted with the interconnection pipe. However, in 1978 production of Hydrolastic bottles at Dunlop came to an end and BL modified the Princess Hydragas bottles to fit. This involved fitting a new front subframe design,with a larger diameter horizontal chamber in the subframe. MGF was the last vehicle platform to use this design. The Hydragas system was dropped in favour of conventional suspension by Rover when BTR AVS sought to increase the price of the units substantially. After servicing the spares market for some years a buyer was found and the production line was sold.

Cars

Cars using the Hydrolastic suspension system:

  • ADO16 Morris / Austin / Wolseley / MG 1100 / 1300, Riley Kestrel / 1300 & Vanden Plas Princess 1100 / 1300
  • ADO16 Innocenti IM3 / IM3S / I4 / I5 (IT)
  • ADO16 Austin Apache / Victoria (ZA/ES)
  • ADO16 Morris 1500 / Nomad (AU/NZ)
  • ADO15 Austin / Morris Mini & Wolseley Hornet / Riley Elf (from 1964 to 1971)
  • ADO17 Austin / Morris 1800 / 2200 & Wolseley 18/85 / Six
  • ADO17 Austin / Morris Kimberley / Tasman (AU/NZ)
  • ADO14 Austin Maxi (until March 1978)
  • ADO61 Austin 3-Litre
  • Huffaker Indianapolis cars 1964-1969 “MG Liquid Suspension Special”

Cars using the Hydragas suspension system:

  • ADO67 Austin Allegro & Vanden Plas 1500 / 1750
  • ADO71 Austin / Morris / Wolseley 18-22, Princess & Austin Ambassador
  • ADO14 Austin Maxi (from March 1978 onwards)
  • ADO88 / LC8 Austin / MG Metro (not interconnected front to rear) & Rover Metro / 100
  • MGF

Bicycles

In 1962 Alex Moulton founded the Moulton Bicycle company to build his innovative design for small wheel bicycles. To ensure a safe and comfortable ride whilst using small wheels with high-pressure tyres Moulton fitted his bicycles with rubber suspension units similar to those used on the original Mini.

Later ‘New Series’ Moulton bicycles are fitted with rear suspensions systems marketed as ‘Hydrolastic’. These are, in essence, miniaturised versions of the displacers used on Hydrolastic-equipped cars being a rubber cone spring with an internal fluid chamber to provide damping.

External links

  • The Hydragas Register – a website helping owners of hydragas and hydrolastic cars to find a garage or individual who can carry out a pump up service in their area.
Beam axle A beam axle, rigid axle or solid axle is a dependent suspension design, in which a set of wheels is connected laterally by a single beam or shaft. Beam axles were once commonly used at the rear wheels of a vehicle, but historically they have also been used as front axles in rear-wheel-drive vehicles. In most automobiles, beam axles have been replaced by front and rear independent suspensions. Beam axle and Panhard rod on a 2002 Mazda MPV Implementation Solid axle suspension characteristics: Camber change on bumps, none on rebound, large unsprung weight With a beam axle the camber angle between the wheels is the same no matter where it is in the travel of the suspension. A beam axle's fore & aft location is constrained by either: trailing arms, semi-trailing arms, radius rods, or leaf springs. The lateral location is constrained by either: a Panhard rod, a Scott Russell linkage or a Watt's linkage. While shock absorbers and either leaf springs, c...
Electromagnetic suspension Electromagnetic suspension (EMS) is the magnetic levitation of an object achieved by constantly altering the strength of a magnetic field produced by electromagnets using a feedback loop. In most cases the levitation effect is mostly due to permanent magnets as they don't have any power dissipation, with electromagnets only used to stabilize the effect. According to Earnshaw's Theorem a paramagnetically magnetised body cannot rest in stable equilibrium when placed in any combination of gravitational and magnetostatic fields. In these kinds of fields an unstable equilibrium condition exists. Although static fields cannot give stability, EMS works by continually altering the current sent to electromagnets to change the strength of the magnetic field and allows a stable levitation to occur. In EMS a feedback loop which continuously adjusts one or more electromagnets to correct the object's motion is used to cancel the instability. Many systems use magnetic attraction pulling upwards...
Dual ball joint suspension A dual ball joint suspension uses a pair of arms, one in tension, one in compression, to replace a wishbone, in a MacPherson or SLA suspension. The outer end of each arm terminates in a ball joint, hence the name. General description The two arms, the spindle, and the body, form a four-bar link. Use of the linkage at the lower suspension connection of either a MacPherson strut or a short long arms suspensionreadily gives an effective virtual ball joint outboard of the spindle, which is very useful for a suspension designer, allowing negative scrub radius whilst allowing the ball joints to move in and thus out of the way of the brakes. Some manufacturers use a double ball joint arm to replace both wishbones on a short long arms suspension. This provides further opportunity for optimising the geometry. Examples It is used on large cars such as the Lexus LS 460, BMW X5, Ford Territory, and General Motors' Zeta-derived models. Disadvantages The extra ball joint adds weight and cost. ...
De Dion tube A de Dion tube is an automobile suspension technology. It is a sophisticated form of non-independent suspension and is a considerable improvement over the swing axle, Hotchkiss drive, or live axle. Because it plays no part in transmitting power to the drive wheels, it is sometimes called a "dead axle". De Dion suspension uses universal joints at both the wheel hubs and differential, and uses a solid tubular beam to hold the opposite wheels in parallel. Unlike an anti-roll bar, a de Dion tube is not directly connected to the chassis nor is it intended to flex. In suspension geometry it is a beam axle suspension. de Dion suspension characteristics: Camber change on one sided bumps, none on rebound. de Dion tube is shown in blue. The differential (yellow) is connected directly to the chassis (orange). De Dion rear axle History The de Dion tube was named after Comte Jules-Albert de Dion, founder of French automobile manufacturer De Dion-Bouton. The tu...
Anti-roll bar An anti-roll bar (roll bar, anti-sway bar, sway bar, stabilizer bar) is a part of many automobile suspensions that helps reduce the body rollof a vehicle during fast cornering or over road irregularities. It connects opposite (left/right) wheels together through short lever arms linked by a torsion spring. A sway bar increases the suspension's roll stiffness—its resistance to roll in turns, independent of its spring rate in the vertical direction. The first stabilizer bar patent was awarded to Canadian inventor Stephen Coleman of Fredericton, New Brunswick on April 22, 1919. Anti-roll bars were unusual on pre-war cars due to the generally much stiffer suspension and acceptance of body roll. From the 1950s on, however, production cars were more commonly fitted with anti-roll bars, especially those vehicles with softer coil spring suspension.   An anti-roll bar (in black) on the rear of a Porsche, which traverses the underside of the car. Flexible bushings attach it to ...