Inboard brake

An inboard braking system is an automobile technology wherein the disc brakes are mounted on the chassis of the vehicle, rather than directly on the wheel hubs. The main advantages are twofold: a reduction in the unsprung weight of the wheel hubs, as this no longer includes the brake discs and calipers; also, braking torque applies directly to the chassis, rather than being taken through the suspension arms.

Inboard brakes are fitted to a driven axle of the car, as they require a drive shaft to link the wheel to the brake. Most have thus been used for rear-wheel drive cars, although four-wheel drive and some front-wheel drives have also used them. A rare few rear wheel drive racing cars (e.g., the Lotus 72) have also used inboard front discs, accepting the need to provide a drive shaft to gain the unsprung weight and braking torque advantages.

McLaren M23 rear brakes

Inboard brakes for early racing cars have rarely used drum brakes, although nearly all inboard brakes date from the disc brake era.

Alfa Romeo 75 rear transaxle

Excepting the case of vehicles with beam axles and vehicles having no suspension, in practice it is normal for inboard brakes to be mounted rigidly with respect to the body of the vehicle, often to the differential casing. This is done to move the weight of the braking mechanism from being carried by the wheels directly (unsprung weight), to being carried indirectly by the wheels via the suspension (sprung mass). This then necessitates a means of transferring braking torque from the brake mechanism to the wheel, which is capable of operating despite the relative movement between body and wheel. Driven wheels already have shafting (or chains in older vehicles) which serve this purpose so there is no penalty for them, but undriven wheels require a similar mechanism which is then called a brake shaft.

The benefit of such a system is primarily the reduction of unsprung weight which improves handling and ride. The suspension does not have to resist twisting when the brakes are applied. The wheels don’t enclose the brake mechanism allowing greater flexibility in wheel offset, and placement of suspension members. It is also much easier to protect the brake mechanism from the outside environment, and protect it from water, dust, and oil. Of secondary importance is flexible brake pipes are avoided; rigid pipes allow increases in brake fluid pressure, allowing for a smaller disc to manage a given braking torque.

The mechanical disadvantages are largely those of added complexity. Undriven wheels require a brake shaft. Mounted inboard, it is more difficult to arrange for cooling air to flow over the rotor and air ducting can be required to prevent brake fade.

There can be practical difficulties in servicing the brake mechanism. Instead of simply removing a wheel to renew pads and discs, the vehicle may need to be jacked up, so a mechanic can work underneath the vehicle. Additionally renewing brake discs can require dismantling the half axle. This greatly discourages their use in motorsport, and the additional time makes for greater labour cost when servicing these parts.

This system was more common in the 1960s, found on such cars as the Jaguar E-Type and Citroën 2CV. The Hummer H1 is one of the few modern vehicles fitted with inboard brakes, to accommodate each wheel’s portal gear system.

Hybrid gasoline/electric vehicles may be considered to have partial inboard braking, because the motor–generator(s) used for the regenerative part of the braking are usually mounted inboard.

Cars with inboard brakes at the driven end

  • Alfa Romeo Alfasud, front wheels have inboard discs.
  • Alfa Romeo Alfetta, GTV, GTV6, Giulietta, 75 / Milano, 90, SZ/RZ
  • Audi 100
  • British Racing Motors: Some BRM racing cars had a single inboard disc brake, acting on both back wheels.
  • Citroën 2CV, DS, GS, SM, Ami, Dyane, Axel and other Citroën models
  • Cord L-29
  • DKW Junior plus other models
  • Hummer H1
  • Jaguar E-Type, Jaguar XJ (until XJ40), Jaguar XJ-S, Jaguar Mark X
  • Lancia Aprilia, Aurelia
  • Lotus Twelve racing car, and most other racing Lotuses after.
  • Lotus Elite, Elan and Esprit
  • Maserati, Quattroporte II (AM123, 1974–1978) https://en.wikipedia.org/wiki/Maserati_Quattroporte
  • Mercedes-Benz W196 and 300SLR
  • Monteverdi Hai 450 SS
  • NSU Ro80
  • Oltcit Club
  • Rover P6
  • Subaru G (FF1 had inboard drums front only)
  • TVR Tasmin
  • Volkswagen K70
Brake lining Brake linings are the consumable surfaces in brake systems, such as drum brakes and disc brakes used in transport vehicles. Drum shoes with linings History Brake linings were invented by Bertha Benz (the wife of Karl Benz who invented the first patented automobile) during her historic first long-distance car trip in the world in August 1888. The first asbestos brake linings were developed in 1908 by Herbert Frood. Although Frood was the first to implement the use of asbestos brake linings, the heat dissipation properties of the fibres were tested by various scientists, including well known materials chemist Dr Gwilym Price, who did most of his research and testing from Cambridge, United Kingdom and various Cambridge-funded institutes. Structure and function Brake linings are composed of a relatively soft but tough and heat-resistant material with a high coefficient of dynamic friction (and ideally an identical coefficient of static friction) typically mounted to a solid metal ...
Brake pad Brake pads are a component of disc brakes used in automotive and other applications. Brake pads are steel backing plates with friction material bound to the surface that faces the disc brake rotor. Function Brake pads convert the kinetic energy of the vehicle to thermal energy through friction. Two brake pads are contained in the brake caliper, with their friction surfaces facing the rotor. When the brakes are hydraulically applied, the caliper clamps or squeezes the two pads together onto the spinning rotor to slow/stop the vehicle. When a brake pad heats up due to contact with the rotor, it transfers small amounts of its friction material onto the disc, leaving a dull grey coating on it. The brake pad and disc (both now having the friction material), then "stick" to each other, providing the friction that stops the vehicle. In disc brakes, there are usually two brake pads per disc rotor. These are held in place and actuated by a caliper affixed to the wheel hub or suspension upr...
Hydraulic brake A hydraulic brake is an arrangement of braking mechanism which uses brake fluid, typically containing glycol ethers or diethylene glycol, to transfer pressure from the controlling mechanism to the braking mechanism. A schematic illustrating the major components of a hydraulic disc brake system. History Fred Duesenberg originated hydraulic brakes on his 1914 racing cars and Duesenberg was the first automotive marque to use the technology on a passenger car in 1921. This braking system could have earned him a fortune if he had patented it. In 1917 Malcolm Loughead (who later changed the spelling of his name to Lockheed) developed a hydraulic brake system. "Lockheed" is a common term for brake fluid in France. The technology was carried forward in automotive use and eventually led to the introduction of the self-energizing hydraulic drum brake system (Edward Bishop Boughton, London England, June 28, 1927) which is still in use today. Construction The most common arrangement ...
Sensotronic Brake Control Sensotronic Brake Control (SBC) is an electro-hydraulic brake system developed by Daimler and Bosch. The SBC system was introduced on the R230 SL-class, which went on sale in Europe in October 2001. How it works In a hydraulic brake system, the driver applies force by a mechanical link from the pedal to the master brake cylinder. In turn the master brake cylinder develops hydraulic pressure in the wheels. In contrast, the electro-hydraulic brake SBC provides the brakes with a brake fluid supply from the hydraulic high-pressure reservoir, which is sufficient for several braking events. A piston pump driven by an electric motor supplies a controlled brake fluid pressure between 140 and 160 Bar in the gas diaphragm reservoir.  When the driver presses the brake pedal - or when ESP intervenes to stabilize the vehicle - the SBC control unit calculates the desired target brake pressures on each individual wheel. Through the use of independent pressure modulators the system regulate...
Air brake (road vehicle) An air brake or, more formally, a compressed air brake system, is a type of friction brake for vehicles in which compressed airpressing on a piston is used to apply the pressure to the brake pad needed to stop the vehicle. Air brakes are used in large heavy vehicles, particularly those having multiple trailers which must be linked into the brake system, such as trucks, buses, trailers, and semi-trailers, in addition to their use in railroad trains. George Westinghouse first developed air brakes for use in railway service. He patented a safer air brake on March 5, 1872. Westinghouse made numerous alterations to improve his air pressured brake invention, which led to various forms of the automatic brake. In the early 20th century, after its advantages were proven in railway use, it was adopted by manufacturers of trucks and heavy road vehicles. Truck air actuated disc brake. Design and function Air brake systems are typically used on heavy trucks and buses. The system consists...