An intercooler is any mechanical device used to cool a fluid, including liquids or gases, between stages of a multi-stage compression process, typically a heat exchanger that removes waste heat in a gas compressor.[1] They are used in many applications, including air compressors, air conditioners, refrigerators, and gas turbines, and are widely known in automotive use as an air-to-air or air-to-liquid cooler for forced induction (turbocharged or supercharged) internal combustion engines to improve their volumetric efficiency by increasing intake air charge density through nearly isobaric (constant pressure) cooling.


The intercooler (top) of this 1910 Ingersoll Rand air compressor extracts waste heat between the two compressor stages.

Air Compressors

Intercoolers are utilized to remove the waste heat from the first stage of two-stage air compressors. Two-stage air compressors are manufactured because of their inherent efficiency. The cooling action of the intercooler is principally responsible for this higher efficiency. Removing the heat-of-compression from the discharge of the first stage has the effect of densifying the air charge. This, in-turn, allows the second stage to produce more work from its fixed compression ratio.

Two-stage compressor pump showing location of the intercooler.

Internal combustion engines

Intercoolers increase the efficiency of the induction system by reducing induction air heat created by the supercharger or turbocharger and promoting more thorough combustion. This removes the heat of compression (i.e., the temperature rise) that occurs in any gas when its pressure is raised (i.e. its unit mass per unit volume – density – is increased).

A decrease in intake air charge temperature sustains use of a more dense intake charge into the engine, as a result of forced induction. The lowering of the intake charge air temperature also eliminates the danger of pre-detonation (knock) of the fuel/air charge prior to timed spark ignition. This preserves the benefits of more fuel/air burn per engine cycle, increasing the output of the engine.

Intercoolers also eliminate the need for using the wasteful method of lowering intake charge temperature by the injection of excess fuel into the cylinders’ air induction chambers, to cool the intake air charge, prior to its flowing into the cylinders. This wasteful practice (before intercoolers were used) nearly eliminated the gain in engine efficiency from forced induction, but was necessitated by the greater need to prevent at all costs the engine damage that pre-detonation engine knocking causes.[2]

The inter prefix in the device name originates from its use as a cooler in between compression cycles. Typically in automobiles the intercooler is placed between the turbocharger (or supercharger) and the engine (the piston compression produces the next compression cycle). Aircraft engines are sometimes built with charge air coolers that were installed between multiple stages of forced induction,[citation needed] thus the designation of inter. In a vehicle fitted with two-stage turbocharging, it is possible to have both an intercooler (between the two turbocharger units) and an aftercooler (between the second-stage turbo and the engine). The JCB Dieselmax land speed record-holding car is an example of such a system. In general, an intercooler or aftercooler is said to be a charge-air cooler.

Intercoolers can vary dramatically in size, shape and design, depending on the performance and space requirements of the entire supercharger system. Common spatial designs are front mounted intercoolers (FMIC), top mounted intercoolers (TMIC) and hybrid mount intercoolers (HMIC). Each type can be cooled with an air-to-air system, air-to-liquid system, or a combination of both.

Applications to forced induction

The engine bay of a 2003 MINI Cooper S—the top mounted intercooler is circled in red.

Interior close up view of an air-to-air intercooler.

Exterior of the same intercooler core.

Turbochargers and superchargers are engineered to force more air mass (and thus more oxygen molecules) into an engine’s intake manifold and combustion chamber. Intercooling is a method used to compensate for heating caused by supercharging, a natural byproduct of the semi-adiabatic compression process. Increased air pressure can result in an excessively hot intake charge, significantly reducing the performance gains of supercharging due to decreased density. Increased intake charge temperature can also increase the cylinder combustion temperature, causing detonation, excessive wear, or heat damage to an engine block or pistons.

Passing a compressed and heated intake charge through an intercooler reduces its temperature (due to heat rejection) and pressure (due to flow restriction of fins). If the device is properly engineered, the relative decrease in temperature is greater than the relative loss in pressure, resulting in a net increase in density. This increases system performance by recovering some losses of the inefficient compression process by rejecting heat to the atmosphere. Additional cooling can be provided by externally spraying a fine mist onto the intercooler surface, or even into the intake air itself, to further reduce intake charge temperature through evaporative cooling.

Intercoolers that exchange their heat directly with the atmosphere are designed to be mounted in areas of an automobile with maximum air flow. These types are mainly mounted in front mounted systems (FMIC). Cars such as the Nissan Skyline, Saab, Volvo 200 Series Turbo, Volvo 700 Series (and 900 series) turbo, Dodge SRT-4, 1st gen Mazda MX-6, Mitsubishi Lancer Evolution and Chevrolet Cobalt SS all use front mounted intercooler(s) mounted near the front bumper, in line with the car’s radiator.

Many other turbo-charged cars, particularly where the aesthetics of the car are not to be compromised by top mount scoops, such as the Toyota Supra (JZA80 only), Nissan 300ZX Twin Turbo, Nissan Silvia (S13/14/14a/15), Nissan 180sx, Mitsubishi 3000gt, Saab 900, Volkswagen, Fiat Turbo diesels, Audi TT, and Turbo Mitsubishi Eclipse use side-mounted air-to-air intercoolers (SMIC), which are mounted in the front corner of the bumper or in front of one of the wheels. Side-mounted intercoolers are generally smaller, mainly due to space constraints, and sometimes two are used to gain the performance of a larger, single intercooler. Cars such as the Subaru Impreza WRX, MINI Cooper S, Toyota Celica GT-Four, Nissan Pulsar GTI-R, Acura RDX, Mazdaspeed3, Mazdaspeed6, and the PSA Peugeot Citroën turbo diesels, use air-to-air top mounted intercoolers (TMIC) located on top of the engine. Air is directed through the intercooler through the use of a hood scoop. In the case of the PSA cars, the air flows through the grille above the front bumper, then through under-hood ducting. Top mounted intercoolers sometimes suffer from heat diffusion due to proximity with the engine, warming them and reducing their overall efficiency. Some World Rally Championship cars use a reverse-induction system design whereby air is forced through ducts in the front bumper to a horizontally mounted intercooler.

Fitting an after market front mount intercooler to a car with a factory installed top mount.

Because FMIC systems require open bumper design for optimal performance, the entire system is vulnerable to debris. Some engineers choose other mount locations due to this reliability concern. FMICs can be located in front of or behind the radiator, depending on the heat dissipation needs of the engine.

As well as allowing a greater mass of air to be admitted to an engine, intercoolers have a key role in controlling the internal temperatures in a turbocharged engine. When fitted with a turbo (as with any form of supercharging), the engine’s specific power is increased, leading to higher combustion and exhaust temperatures. The exhaust gases passing through the turbine section of the turbocharger are usually around 450 °C (840 °F), but can be as high as 1000 °C (1830 °F) under extreme conditions. This heat passes through the turbocharger unit and contributes to the heating of the air being compressed in the compressor section of the turbo. If left uncooled, this hot air enters the engine, further increasing internal temperatures. This leads to a build-up of heat that will eventually stabilise, but this may be at temperatures in excess of the engine’s design limits- ‘hot spots’ at the piston crown or exhaust valve can cause warping or cracking of these components. High air charge temperatures will also increase the possibility of pre-ignition or detonation. Detonation causes damaging pressure spikes in the engine’s cylinders, which can quickly damage an engine. These effects are especially found in modified or tuned engines running at very high specific power outputs. An efficient intercooler removes heat from the air in the induction system, preventing the cyclic heat build-up via the turbocharger, allowing higher power outputs to be achieved without damage.

Compression by the turbocharger causes the intake air to heat up and heat is added due to compressor inefficiencies (adiabatic efficiency). This is actually the greater cause of the increase in air temperature in an air charge. The extra power obtained from forced induction is due to the extra air available to burn more fuel in each cylinder. This sometimes requires a lower compression ratio be used, to allow a wider mapping of ignition timing advance before detonation occurs (for a given fuel’s octane rating). On the other hand, a lower compression ratio generally lowers combustion efficiency and costs power.

Some high performance tuning companies measure the temperature before and after the intercooler to ensure the output temperature is as close to ambient as possible (without additional cooling; water/liquid gas spray kits).

Air-to-liquid intercoolers

A custom-built air-to-water intercooler, as used in a time attackcar.

S55 engine in a 2014 BMW M3; the cuboid-shaped metal component is the air-to-liquid charge air cooler.

Air-to-liquid intercoolers, also known as Charge Air Coolers, are heat exchangers that transfer intake charge heat to an intermediate fluid, usually water, which finally rejects heat to the air. These systems use radiators in other locations, usually due to space constraints, to reject unwanted heat, similar to an automotive radiator cooling system. Air-to-liquid intercoolers are usually heavier than their air-to-air counterparts due to additional components making up the system (water circulation pump, radiator, fluid, and plumbing). The Toyota Celica GT-Four had this system from 1988 to 1989, 1994 to 1999, also in the Carlos Sainz Rally Championship Version from 1990 to 1993. The 1989-1993 Subaru Legacy with the 2.0 L DOHC flat-4 engine also used a top installed air-to-water intercooler on the GT and RS models sold in Japan, Europe, and Australia.

A big advantage of the air-to-liquid setup is the lower overall pipe and intercooler length, which offers faster response (lowers turbo lag), giving peak boost faster than most front-mount intercooler setups. Some setups have reservoirs that can hold ice, producing intake temperatures lower than ambient air, giving a big advantage (but of course, ice would need constant replacement).

Ford had adopted the technology when they decided to use forced induction (via Supercharger) on their Mustang Cobra and Ford Lightning truck platforms. It uses a water/glycol mixture intercooler inside the intake manifold, just under the supercharger, and has a long heat exchanger front mounted, all powered by a Bosch pump made for Ford. Ford still uses this technology today with their Shelby GT500. The 2005-2007 Chevrolet Cobalt SS Supercharged also utilizes a similar setup.

Air-to-liquid intercoolers are by far the most common form of intercooler found on marine engines, given that a limitless supply of cooling water is available and most engines are located in closed compartments where obtaining a good flow of cooling air for an air-to-air unit would be difficult. Marine intercoolers take the form of a tubular heat exchanger with the air passing through a series of tubes and cooling water circulating around the tubes within the unit’s casing. The source of water for the intercooler depends on the exact cooling system fitted to the engine. Most marine engines have fresh water circulating within them which is passed through a heat exchanger cooled by sea water. In such a system, the intercooler will be attached to the sea water circuit and placed before the engine’s own heat exchanger to ensure a supply of cool water.

Charge air cooler

charge air cooler is used to cool engine air after it has passed through a turbocharger, but before it enters the engine. The idea is to return the air to a lower temperature, for the optimum power for the combustion process within the engine.

4-stroke diesel engine coolers

Charge air coolers range in size depending on the engine. The smallest are most often referred to as intercoolers and are attached to automobile engines or truck engines. The largest are reserved for use on huge marine diesel engines, and can weigh over 2 tonnes (see picture).

Marine diesel engine charge-air coolers are still manufactured in Europe, despite the very largest engines mostly being built in the Far East. Vestas aircoil A/S and GEA are the oldest makers still in business.

The first marine diesel engine charge air cooler was built by Vestas aircoil A/S in 1956.

There is some confusion in terminology between aftercooler, intercooler, and charge-air cooler. In the past, aircraft engines would run turbochargers in stages, where the first stage compressor would feed the inlet of the second stage compressor that would further compress the air before it enters the engine. Due to the extremely high pressures that would develop, an air cooler was positioned between the first and second stage compressors. That cooler was the “Intercooler”.

Another cooler would be positioned after the second stage, which was the final compressor stage, and that was the “aftercooler”. An aftercooler was the cooler whose outlet fed the engine.

Location of cooler on large diesel engine

A charge-air cooler is simply an all-encompassing term, meaning that it cools the turbo’s air charge before it is routed into the engine. Usually a charge-air cooler means an air-to-air cooler where the heat is rejected using ambient air flowing through the heat exchanger, much like the engine’s coolant radiator. While the multi-stage turbocharger systems are still in use in some tractor pull classes, selected high-performance diesels, and are also being used on newer late model commercial diesels, the term intercooler and aftercooler are used synonymously today. The term intercooler is widely used to mean in-between the Turbocharger and the engine. Both terms, intercooler or aftercooler, are correct, but this is the origin of the two terms that are used interchangeably by all levels of experts.

An intercooler, or “Charge-Air Cooler”, is an air-to-air or air-to-liquid heat exchange device used on turbocharged and supercharged (forced induction) internal combustion engines to improve their volumetric efficiency by increasing intake air-charge density through isochoric cooling. A decrease in air intake temperature provides a denser intake charge to the engine and allows more air and fuel to be combusted per engine cycle, increasing the output of the engine.

The inter prefix in the device name originates from historic compressor designs. In the past, aircraft engines were built with Charge-Air Coolers that were installed between multiple stages of supercharging, thus the designation of inter. Modern automobile designs are technically designated aftercoolers because of their placement at the end of supercharging chain. This term is now considered archaic in modern automobile terminology since most forced induction vehicles have single-stage superchargers or turbochargers. In a vehicle fitted with two-stage turbocharging, it is possible to have both an intercooler (between the two turbocharger units) and an aftercooler (between the second-stage turbo and the engine). In general, an intercooler or aftercooler is said to be a Charge-Air Cooler. Text taken from Av-Tekk Charge-Air Coolers website


  1. Dictionary definitions:
    • intercooler, n. Oxford English Dictionary. Second edition, 1989; online version December 2011. Accessed 31 December 2011. First published in A Supplement to the OED II, 1976.
    • Intercooler.
    • Intercooler. Merriam-Webster
  2. “Garrett Turbochargers – Performance Parts and Accessories – D&W Performance”. Retrieved 2010-07-04.
Turbocharged direct injection Turbocharged direct injection or TDI is a design of turbodiesel engines featuring turbocharging and cylinder-direct fuel injection that was developed and produced by the Volkswagen Group (VW AG). These TDI engines are widely used in all mainstream Volkswagen Group marquesof passenger cars and light commercial vehicles made by the company (particularly those sold in Europe). They are also used as marine enginesin Volkswagen Marine and Volkswagen Industrial Motor applications. TDI engines installed in 2009 to 2015 model year Volkswagen Group cars sold through 18 September 2015 had an emissions defeat device,which activated emissions controls only during emissions testing. The emissions controls were suppressed otherwise, allowing the TDI engines to exceed legal limits on emissions. VW has admitted to using the illegal device in its TDI diesel cars. In many countries, TDI is a registered trademark of Volkswagen AG. The TDI designation has also been used on vehicles powered by Lan...
Boost gauge A boost gauge is a pressure gauge that indicates manifold air pressure or turbocharger or supercharger boost pressure in an internal combustion engine. They are commonly mounted on the dashboard, on the driver's side pillar, or in a radio slot. Turbochargers and superchargers are both engine-driven air compressors (exhaust-driven or mechanically driven, respectively) and provide varying levels of boost according to engine rpm, load etc. Quite often there is a power band within a given range of available boost pressure and it is an aid to performance driving to be aware of when that power band is being approached, in the same way a driver wants to be aware of engine rpm. A boost gauge is used to ensure excessive pressure is not being generated when boost pressure is being modified to levels higher than OEM standard on a production turbocharged car. Simple methods can be employed to increase factory boost levels, such as bleeding air off the wastegate diaphragm to 'fool' it into st...
Turbo-diesel Turbo-diesel, also written as turbodiesel and turbo diesel, refers to any diesel engine equipped with a turbocharger. Turbocharging is common in modern car and truck diesel engines to produce higher power outputs, lower emissions levels, and improved efficiency from a similar capacity of engine. Turbo-diesels in automobiles offer a higher refinement level than their naturally aspirated counterparts. A diesel engine turbocharger History The turbocharger was invented in the early 20th century by Alfred Büchi, a Swiss engineer and the head of diesel engine research at Gebruder Sulzer engine manufacturing company in Winterthur. Büchi specifically intended his device to be used on diesel engines. His patent of 1905 noted the efficiency improvements that a turbocharger could bring to diesel engines  which in 1922 had first been developed for use in road transportation. At the time, metal and bearing technology was not sufficiently advanced to allow a practical turbocharger to be ...
Twin-turbo Twin-turbo or biturbo refers to a turbocharged engine in which two turbochargers compress the intake charge. More specifically called "parallel twin-turbos". Other kinds of turbocharging include sequential turbocharging, and staged turbocharging. The latter is used in diesel automobile racing applications. 3.5 Ford EcoBoost engine (Twin Turbo) Parallel twin-turbo Paralleled twin-turbo refers to the turbocharger configuration in which two identical turbochargers function simultaneously, splitting the turbocharging duties equally. Each turbocharger is driven by half of the engine's spent exhaust energy. In most applications, the compressed air from both turbos is combined in a common intake manifold and sent to the individual cylinders. Usually, each turbocharger is mounted to its own individual exhaust/turbo manifold, but on inline-type engines both turbochargers can be mounted to a single turbo manifold. Parallel twin turbos applied to V-shaped engines are usually mounted with...
Supercharger A supercharger is an air compressor that increases the pressure or density of air supplied to an internal combustion engine. This gives each intake cycle of the engine more oxygen, letting it burn more fuel and do more work, thus increasing power. Power for the supercharger can be provided mechanically by means of a belt, gear, shaft, or chain connected to the engine's crankshaft. Common usage restricts the term supercharger to mechanically driven units; when power is instead provided by a turbine powered by exhaust gas, a supercharger is known as a turbocharger or just a turbo - or in the past a turbosupercharger. Roots type supercharger on AMC V8 engine for dragstrip racing History In 1848 or 1849, G. Jones of Birmingham, England brought out a Roots-style compressor. In 1860, brothers Philander and Francis Marion Roots, founders of Roots Blower Company of Connersville, Indiana, patented the design for an air mover for use in blast furnaces and other industrial app...