Naturally aspirated engine

naturally aspirated engine is an internal combustion engine in which oxygen intake depends solely on atmospheric pressure and does not rely on forced induction through a turbocharger or a supercharger.[1] Many sports cars specifically use naturally aspirated engines to avoid turbo lag.

Description

In a naturally aspirated engine, air for combustion (diesel cycle in a diesel engine or specific types of Otto cycle in petrol engines—namely petrol direct injection), or an air/fuel mixture (traditional Otto cycle petrol engines)—is drawn into the engine’s cylinders by atmospheric pressure acting against a partial vacuum that occurs as the piston travels downwards toward bottom dead centre during the intake stroke. Owing to innate restriction in the engine’s inlet tract, which includes the intake manifold, a small pressure drop occurs as air is drawn in, resulting in a volumetric efficiency of less than 100 percent—and a less than complete air charge in the cylinder. The density of the air charge, and therefore the engine’s maximum theoretical power output, in addition to being influenced by induction system restriction, is also affected by engine speed and atmospheric pressure, the latter of which decreases as the operating altitude increases.[2]

This is in contrast to a forced-induction engine, in which a mechanically driven supercharger or an exhaust-driven turbocharger is employed to facilitate increasing the mass of intake air beyond what could be produced by atmospheric pressure alone. Nitrous oxide can also be used to artificially increase the mass of oxygen present in the intake air. This is accomplished by injecting liquid nitrous oxide into the intake, which supplies significantly more oxygen in a given volume than is possible with atmospheric air. Nitrous oxide is 36.352% oxygen by mass as compared with atmospheric air at 20.95%. Nitrous oxide also boils at −127.3 °F (−88.5 °C) at atmospheric pressures and offers significant cooling from the latent heat of vaporization, which also aids in increasing the overall air charge density significantly compared to natural aspiration.

As a two-stroke diesel engine is incapable of this natural aspiration, some method of charging the cylinders with scavenging air must be integrated into the engine design. This is usually achieved with a positive displacement blower driven by the crankshaft. The blower does not act as a supercharger in this application, as it is sized to produce a volume of air flow that is in direct proportion to engine’s requirement for combustion, at a given power and speed. By the Society of Automotive Engineer‘s definition, a mechanically scavenged two-stroke diesel engine is considered to be naturally aspirated.

Applications

Most automobile petrol engines, as well as many small engines used for non-automotive purposes, are naturally aspirated.[3] Most modern diesel engines powering highway vehicles are turbocharged to produce a more favourable power-to-weight ratio, a higher torque curve, as well as better fuel efficiency and lower exhaust emissions. Turbocharging is nearly universal on diesel engines that are used in railroad, marine engines, and commercial stationary applications (electrical power generation, for example). Forced induction is also used with reciprocating aircraft engines to negate some of the power loss that occurs as the aircraft climbs to higher altitudes.

Advantages and disadvantages

Advantages and disadvantages of a naturally aspirated engine in relation to a same-sized engine relying on forced induction.

Advantages

  • Easier maintenance
  • Lower production and development costs
  • Greater reliability (fewer separate parts)
  • Direct throttle response (no turbo lag)

Disadvantages

  • Lower efficiency
  • Lower power-to-weight ratio
  • Small potential for tuning
  • Greater power loss at higher elevation (lower air pressure) compared to forced induction counterparts

References

  1. “What is a normally aspirated engine?”. ask.cars.com. 2008-09-02. Retrieved 2015-10-18.
  2. “Naturally Aspirated Engine”. Weber Motor. Retrieved 2013-06-16.
  3. “What is a Naturally Aspirated Engine ?”. Private Fleet. Retrieved 2017-02-17Most motor vehicle engines are naturally-aspirated engines; however, turbocharging and supercharging are currently a very popular way of boosting power output for a number car marques.
Air filter A particulate air filter is a device composed of fibrous or porous materials which removes solid particulates such as dust, pollen, mold, and bacteria from the air. Filters containing an absorbent or catalyst such as charcoal (carbon) may also remove odors and gaseous pollutants such as volatile organic compounds or ozone. Air filters are used in applications where air quality is important, notably in building ventilation systems and in engines. Some buildings, as well as aircraft and other human-made environments (e.g., satellites and space shuttles) use foam, pleated paper, or spun fiberglass filter elements. Another method, air ionizers, use fibers or elements with a static electric charge, which attract dust particles. The air intakes of internal combustion engines and air compressors tend to use either paper, foam, or cotton filters. Oil bath filters have fallen out of favor. The technology of air intake filters of gas turbines has improved significantly in recent years, due to...
Manifold vacuum Manifold vacuum, or engine vacuum in an internal combustion engine is the difference in air pressure between the engine's intake manifold and Earth's atmosphere. Manifold vacuum is an effect of a piston's movement on the induction stroke and the choked flow through a throttle in the intake manifold of an engine. It is a measure of the amount of restriction of airflow through the engine, and hence of the unused power capacity in the engine. In some engines, the manifold vacuum is also used as an auxiliary power source to drive engine accessories and for the crankcase ventilation system. Manifold vacuum should not be confused with venturi vacuum, which is an effect exploited in carburetors to establish a pressure difference roughly proportional to mass airflow and to maintain a somewhat constant air/fuel ratio. It is also used in light airplanes to provide airflow for pneumatic gyroscopic instruments. Overview The rate of airflow through an internal combustion engine is an import...
Ram-air intake A ram-air intake is any intake design which uses the dynamic air pressure created by vehicle motion to increase the static air pressure inside of the intake manifold on an internal combustion engine, thus allowing a greater massflow through the engine and hence increasing engine power. Design features Ram air intakes on a 1973 Mustang Mach 1 Motorcycle with gooseneck mounted hypercharger air intake The ram-air intake works by reducing the intake air velocity by increasing the cross-sectional area of the intake ducting. When gas velocity goes down the dynamic pressure is reduced, while the static pressure is increased. The increased static pressure in the plenum chamber has a positive effect on engine power, both because of the pressure itself and the increased air density that this higher pressure gives. Ram-air systems are used on high-performance vehicles, most often on motorcycles and performance cars. The 1990 Kawasaki Ninja ZX-11 C1 model used a ...