Run-flat tire

run-flat tire is a pneumatic vehicle tire that is designed to resist the effects of deflation when punctured, and to enable the vehicle to continue to be driven at reduced speeds – under 56 mph (90 km/h) – and for limited distances – generally between 10 mi (16 km) to 50 mi (80 km), depending on the type of tire.

Cutaway model of MOWAG Piranha tire

Technologies

There are three basic technologies currently available, described below.

Self-supporting

The origins of the commercial self-supporting run-flat tire started in 1935 with a tire that had a fabric inner tire. The tire was advertised as a protection against blow outs, a common and dangerous occurrence in the 1930s.[1]

In 1934, Michelin introduced a tire that was based on technology developed for local commuter trains and trolleys. It had a safety rim inside the tire which if punctured would run on a special foam lining. The tire was sold for military use and for specialized vehicles like bank armoured cars. It was advertised as “semi-bullet proof”. While the tire performed as advertised it was far too expensive to be a feasible option for most private automobile users.[2]

In 1958, Chrysler teamed with Goodyear Tire and Rubber Company to offer Captive Air run-flat tires using an interlining to carry the weight.

In 1972 Dunlop launched the Total Mobility Tyre (later Denovo) “fail-safe” wheel and tire system that became optional equipment on the Rover P6 3500 in 1973,[3] and by 1983 evolved into the TD/Denloc which became standard equipment across the whole Austin Metro range.

Most recently, Bridgestone and Pirelli run-flat tires are supplied on some new model BMW cars. The automaker promoted these as a safety feature and as an alternative to carrying a spare tire.

Self-supporting run-flat tires are now common on light trucks and passenger cars and typically provide for the vehicle to drive for 50 miles (80 km) at around 50 miles per hour (80 km/h). However, if the tires are subject to this kind of misuse, wheels may become damaged in the process, and repair may be impossible or unsafe, especially if the tire is punctured in the sidewall or at the edge of the tread. These tires carry a 20 to 40 percent weight penalty over similar standard tires.[4] The thicker sidewall also means higher rolling resistance, which reduces the vehicle’s fuel economy.[4]

Self-sealing

These tires contain an extra lining within the tire that self-seals in the event of a small hole due to a nail or screw. In this way, the loss of air is prevented from the outset such that the tire is either permanently self-repairing or at least loses air very slowly.

There are also a number of retrofitted tire sealants which act in a similar way to self-sealing tires. These compounds are normally injected through the tire valve. The rotating force then distributes the compound onto the inner surface of the tire to act as a self-sealing lining within the tire.

Auxiliary-supported

Run-flat tire with support ring

In this system, there is an additional support ring or insert attached to the wheel that can support the weight of the vehicle in the event of a loss of pressure. The runflat insert, because of its unsurpassed ability to carry heavy vehicle loads for long distances at high speeds, is the normal runflat selection for military vehicles, high-level executive protection vehicles, and “armored” vehicles used by government, aid groups, or private contractors in conflict zones.

Standards of performance

The basic benefit of using run-flat tires is continued mobility in case of a loss of air pressure, due either to a ‘normal’ puncture or to a hostile deliberate act including a bullet strike while the vehicle is traveling at high speed. Performance criteria are therefore in terms of distance and speed at which the vehicle can escape without becoming immobile and the steering control over the vehicle during this process.

The usual standard of performance, especially for military or security vehicles, are the Finabel standards.

Market share

Run-flat tires accounted for less than 1% of replacement tire sales in the U.S. in 2005. In 2006, it was expected that such tires would gain popularity with armored vehicle manufacturers, but growth figures were slow with one major model, the Michelin PAX System, no longer being developed by the manufacturer (though replacements will be produced for the foreseeable future).[5] A Michelin study released in 2008 found that 3 percent of drivers worldwide want run-flat tires. U.S. market share is well below 1 percent. American Honda Motor Co. announced that the 2009 Honda Odyssey Touring and Acura RL were its last models available with run-flat tires and with Honda no longer using run-flats. This leaves only a handful of volume manufacturers offering them as standard fittings and only on some models. An exception is BMW, who are the largest fitter of run-flats as original equipment.[4]

Former US President Barack Obama’s presidential limo, “the Beast“, had Goodyear Kevlar lined run flat tires.[6]

Factors contributing to small market share

Besides the cost, which can be more than double other tires of comparable size, run-flat tires can not be run flat if the flat is due to sidewall damage, a common cause of flats. Also, under the best circumstances, the speed and range that the run-flat tires can be run flat is very limited. Run-flat tires cannot be driven over 50 miles per hour and usually offer only up to 50 miles of extended mobility. These limitations lower the value of the extra expense for many buyers. In certain applications, depending on the vehicle, specific tire design, and driving surface, a run-flat tire can provide from 25 miles to 200 miles driving while flat with limited speed.

References

  1. “Fabric Inner Tube Lessens Blowout Hazards”. Popular Mechanics63 (4): 488. April 1935. Retrieved 10 June 2012.
  2. “Bullet Proof Tire Has Sponge Rubber Tube”. Popular Mechanics62 (6): 872. December 1934. Retrieved 10 June 2012.
  3. “Evening Times – Google News Archive Search”. news.google.com.
  4. a b c Kranz, Rick (27 July 2009). “The air runs out of run-flat tires”. The Center for Auto Safety. Retrieved 10 June 2012.
  5. Jensen, Christopher (20 April 2008). “Michelin Giving Up on PAX Run-Flat Tire”. The New York Times. Retrieved 2 July 2010.
  6. “The Beast: President Barack Obama’s High-Tech Super-Limo”. thecarconnection.com.
Tire-pressure gauge A tire-pressure gauge, or tyre-pressure gauge, is a pressure gauge used to measure the pressure of tires on a vehicle. Since tires are rated for specific loads at certain pressure, it is important to keep the pressure of the tire at the optimal amount. Tires are rated for their optimal pressure when cold, meaning before the tire has been driven on for the day and allowed to heat up, which ultimately changes the internal pressure of the tire due to the expansion of gases. The precision of a typical mechanical gauge as shown is ±3 psi (21 kPa). Higher precision gauges with ±1 psi (6.9 kPa) uncertainty can also be obtained. A tire-pressure gauge in use. The example in this image is a Bourdon tube gauge. Built-in tire pressure sensors Many modern cars now come with built-in tire pressure sensors that allow all four tire pressures to be read simultaneously from inside the car. In 2005, most on-board Tire Pressure Monitoring Systems (TPMS) used indirect pressure monitoring....
Tire manufacturing Pneumatic tires are manufactured according to relatively standardized processes and machinery, in around 455 tire factories in the world. With over 1 billion tires manufactured worldwide annually, the tire industry is the major consumer of natural rubber. Tire factories start with bulk raw materials such as synthetic rubber (60% -70% of total rubber in the tire industry), carbon black, and chemicals and produce numerous specialized components that are assembled and cured. This article describes the components assembled to make a tire, the various materials used, the manufacturing processes and machinery, and the overall business model. The tire is an assembly of numerous components that are built up on a drum and then cured in a press under heat and pressure. Heat facilitates a polymerization reaction that crosslinks rubber monomers to create long elastic. Inner liner The inner liner is an extruded halobutyl rubber sheet compounded with additives that result in low air perme...
Tire-pressure monitoring system A tire-pressure monitoring system (TPMS) is an electronic system designed to monitor the air pressure inside the pneumatic tires on various types of vehicles. TPMS report real-time tire-pressure information to the driver of the vehicle, either via a gauge, a pictogram display, or a simple low-pressure warning light. TPMS can be divided into two different types – direct (dTPMS) and indirect (iTPMS). TPMS are provided both at an OEM (factory) level as well as an aftermarket solution. The target of a TPMS is avoiding traffic accidents, poor fuel economy, and increased tire wear due to under-inflated tires through early recognition of a hazardous state of the tires. History Initial adoption Due to the influence tire pressure has on vehicle safety and efficiency, tire-pressure monitoring (TPM) was first adopted by the European market as an optional feature for luxurypassenger vehicles in the 1980s. The first passenger vehicle to adopt TPM was the Porsche 959 in 1986, using a hollow spoke...
Tread The tread of a tire or track refers to the rubber on its circumference that makes contact with the road or the ground. As tires are used, the tread is worn off, limiting its effectiveness in providing traction. A worn tire can often be retreaded. The word tread is often used casually to refer to the pattern of grooves molded into the rubber, but those grooves are correctly called the tread pattern, or simply the pattern. The grooves are not the tread, they are in the tread. This distinction is especially significant in the case of racing slicks, which have a lot of tread but no grooves. Tires Common tire tread pattern. Street tires The grooves in the rubber are designed to allow water to be expelled from beneath the tire and prevent hydroplaning. The proportion of rubber to air space on the road surface directly affects its traction. Design of tire tread has an effect upon noise generated, especially at freeway speeds. Generally there is a tradeoff of tre...
Airless tire Airless tires, or non-pneumatic tires (NPT), are tires that are not supported by air pressure. They are used on some small vehicles such as riding lawn mowers and motorized golf carts. They are also used on heavy equipment such as backhoes, which are required to operate on sites such as building demolition, where risk of tire punctures is high. Tires composed of closed-cell polyurethane foam are also made for bicycles and wheelchairs.   12-16.5 Mk1 Croc Tyre with rim center fitted Advantages The main advantage of airless tires is that they cannot go flat. Other advantages are that airless tires will need to be replaced less often resulting in a savings. Heavy equipment outfitted with airless tires will be able to carry more weight and engage in more rugged activities. Airless bicycle tires can be easy to install. Airless lawn mower tires come in several varieties. Disadvantages Airless tires generally have higher rolling resistance and provide somewhat less suspens...