Self-levelling suspension

Self-levelling refers to an automobile suspension system that maintains a constant ride height of the vehicle above the road, regardless of load.

Purpose

Nose up, tail down attitude of vehicle without self-levelling suspension

Many vehicle systems on a conventional vehicle are negatively affected by the change in attitude coming from changes in load – specifically a heavy load in the rear seat or luggage compartment.[1] This change in attitude affects aerodynamic properties, headlight aim, braking, bumpers, shock absorption from the suspension and the vehicle’s performance in a collision.[2]

Most of the braking power is on the front wheels of a vehicle, which means you will have more effective braking when more weight is over the front wheels. When the rear end has a heavy load, the braking is not as effective. The weight is concentrated on the rear end of the vehicle, and the rear brakes need to do all of the work. When braking quickly in this situation, the front brakes will be easier to lock up because of the lack of weight transfer to the front of the vehicle. Self-levelling suspension lifts the rear end of the vehicle up to spread out the weight more evenly. This puts the weight back onto the front end of the vehicle, which lets the brakes do their job more effectively.[3]

There is an inherent conflict in suspension design – if the springs are soft, the car will be comfortable but dramatically affected by load.[4] If the springs are hard, the car will be uncomfortable, but less affected by load.[5]

Numerous manufacturers realize this conflict and have pursued different avenues to achieve both comfort and load capacity simultaneously.

History

In France in 1954, Citroën introduced the first self-levelling rear suspension on a production car, and then in 1955 pioneered self-levelling of all four wheels, using its hydropneumaticsystem. These cars maintain an exact height over the road when the engine is on – height control valves attached to the roll bars via linkages would open to add or drain fluid from the suspension, and when the desired height was reached the valve would automatically close due to its design.[6] Later models would use electronic height sensors and motors so adjustment could be achieved with the engine off.

This system allowed the suspension to achieve an unusually soft ride quality.[7]

Since then, millions of fairly inexpensive Citroën cars have been equipped with self-levelling as an unobtrusive, but integral design feature. The Citroën’s dashboard (later console or fascia mounted controls) includes a position lever which allows the driver to select whether the car would sit with the body in high, intermediate, normal or low positions, the extremes used for maintenance such as changing wheels or hydraulic system work. Up until 1995 when they added “antisink” to the range when the engine was turned off, the suspension slowly lost pressure until the car rested on the bump stops. When the engine was restarted it rose back to its pre-selected height. The addition of anti-sink added 2 non-return valves and an extra accumulator so that when hydraulic pressure was lost the valves would close and keep the remaining fluid in the system, and leaving the car resting at a normal height when parked.

In the United States, William D. Allison developed Torsion-Level Suspension used on 1955-1956 model Packards. This was an interconnected suspension, with torsion bars that ran along each side of the frame, connecting the front wheel to the rear (on the same side). Because this system is so affected by load, a supplemental, electronic leveling system was added, which uses a level sensor and a single motor to load/unload a pair of auxiliary bars to adjust vehicle attitude, but not overall ride height.[8][9] This early attempt was an important step on the road to self-leveling, even if a full load would cause the whole car to lower evenly, rather than maintain height.

In 1957, Cadillac, introduced the Eldorado Brougham, a Rolls-Royce Silver Cloud competitor, featuring a new Air suspension with a self leveling feature.[10]

In 1966, Rolls-Royce licensed Citroën’s hydropneumatic system to fit to the rear axle of the Silver Shadow.[11] At first, both the front and rear of the car were controlled by the levelling system; the front levelling was removed in 1969 as it had been determined that the rear levelling did almost all the work. Rolls-Royce achieved a high degree of ride quality with this arrangement.[12]

Land Rover developed a different system for the Range Rover in the early 1970s. The Range Rover was intended to be as comfortable on the road as a normal saloon car yet as capable of heavy off-road use as a traditional Land Rover. This highlighted the contradiction in suspension design as the Range Rover used all-round long-travel coil springs. If these were kept soft to maintain comfort they would compress too much under a heavy payload, restricting axle travel when off-road and compromising handling. Land Rover developed a self-levelling rear suspension using the “Boge Hydromat” self-energising hydraulic strut.[13]

Of similar construction to a hydraulic shock absorber the strut used the motion of the suspension travelling over bumps to pump itself back up to a pre-set height. It was sufficiently powerful to regain up to 85% of normal ride height with a full load over the rear axle, and had the advantage of requiring no external power source or a dedicated hydraulic system in the vehicle. The same system was applied to the Land Rover in the 1980s when these vehicles adopted the Range Rover’s coil spring suspension. In the 1990s Land Rover, in pursuit of the same blend of on- and off-road ability, developed an air suspension system that was both self-levelling and height adjustable. Originally this was in conjunction with live axles but it is now used with fully independent suspension using wishbones. The original coil-springs-with-hydraulic-strut system is still used on certain models of the current Land Rover Defender.

BMW, Ford, GMC, Jaguar, Mercedes-Benz, Scania AB, Subaru and Volvo have each pursued numerous avenues to address this issue, including air suspension and rear axle mechanical devices.

Notes

  1. http://www.equipmentworld.com/understanding-your-pickups-max-payload-capacity-and-how-helper-springs-make-a-smooth-ride-of-a-heavy-load/
  2. http://www.bmw.com/com/en/insights/technology/technology_guide/articles/self_levelling.html?source=categories&article=self_levelling
  3. https://racingrebel.com/5-reasons-why-air-lift-1000-air-bags-are-amazing/
  4. http://papers.sae.org/2004-01-1078/
  5. “The ride comfort vs. handling compromise for off-road vehicles”. Journal of Terramechanics44: 303–317. doi:10.1016/j.jterra.2007.05.001.
  6. “Citroën’s hydropneumatique”. citroenet.org.uk. Retrieved 2 November 2016.
  7. http://www.autoevolution.com/news/citroen-hydropneumatic-suspension-explained-49954.html
  8. http://packardinfo.com/xoops/html/modules/newbb/viewtopic.php?post_id=58253
  9. http://justacarguy.blogspot.com/2014/05/packards-torsion-level-suspension.html
  10. https://history.gmheritagecenter.com/wiki/index.php/1957_%26_58_Cadillac_Eldorado_Brougham
  11. “Archived copy”. Archived from the original on 2015-01-20. Retrieved 2015-01-20.
  12. http://www.rrsilvershadow.com/Emenu/hydr.htm
  13. http://www.uniquecarsandparts.com.au/specifications/land_rover/1972_range_rover.htm
Dual ball joint suspension A dual ball joint suspension uses a pair of arms, one in tension, one in compression, to replace a wishbone, in a MacPherson or SLA suspension. The outer end of each arm terminates in a ball joint, hence the name. General description The two arms, the spindle, and the body, form a four-bar link. Use of the linkage at the lower suspension connection of either a MacPherson strut or a short long arms suspensionreadily gives an effective virtual ball joint outboard of the spindle, which is very useful for a suspension designer, allowing negative scrub radius whilst allowing the ball joints to move in and thus out of the way of the brakes. Some manufacturers use a double ball joint arm to replace both wishbones on a short long arms suspension. This provides further opportunity for optimising the geometry. Examples It is used on large cars such as the Lexus LS 460, BMW X5, Ford Territory, and General Motors' Zeta-derived models. Disadvantages The extra ball joint adds weight and cost. ...
Multi-link suspension A multi-link suspension is a type of vehicle suspension design typically used in independent suspensions, using three or more lateral arms, and one or more longitudinal arms. A wider definition considers any independent suspensions having three control links or more multi-link suspensions. These arms do not have to be of equal length, and may be angled away from their "obvious" direction. It was first introduced in the late 1960s on the Mercedes-Benz C111 and later on their W201 and W124series. Typically each arm has a spherical joint (ball joint) or rubber bushing at each end. Consequently, they react to loads along their own length, in tension and compression, but not in bending. Some multi-links do use a trailing arm, control arm or wishbone, which has two bushings at one end. On a front suspension one of the lateral arms is replaced by the tie-rod, which connects the rack or steering box to the wheel hub. In order to simplify understanding, it is usual to consider the func...
Height adjustable suspension Height adjustable suspension is a feature of certain automobile suspension systems that allow the motorist to vary the ride height or ground clearance. This can be done for various reasons including giving better ground clearance over rough terrain, a lower ground clearance to improve performance and fuel economy at high speed, or for stylistic reasons. Such a feature requires fairly sophisticated engineering. Citroën CX in high position. Height adjustment is most often achieved by air or oil compression used for the "springs" of the vehicle - when the pressure is varied - the vehicle body rises or lowers. Factory systems Height adjustable suspension from 1954 - high position An Audi A8 Multi Media Interface control screen for its Adaptive Air Suspension, which gives the vehicle clearance a range from 95 mm to 145 mm Kneeling bus in Dublin The first instance of a production vehicle with adjustable suspension was on the 1954 Citroën...
MacPherson strut The MacPherson strut is a type of automotive suspension system that uses the top of a telescopic damper as the upper steering pivot. It is widely used in the front suspension of modern vehicles and is named for American automotive engineer Earle S. MacPherson, who originally invented and developed the design. A simple MacPherson strut suspension on the left front wheel of a rear-wheel drive vehicle. The front of the vehicle is at bottom right of the image. Upper green: Vehicle body/strut interface Red: Steering knuckle or hub carrier Blue: Lower control arm or track control arm Light blue: Steering gear tie rod or track rod Lower purple: Radius rod Upper purple: Coil spring Yellow: Tubular housing containing shock absorber or damper Lower green: Vehicle frame or unibody member History Earle S. MacPherson was appointed the chief engineer of Chevrolet's Light Car project in 1945, to develop new smaller cars for the immediate post-war market. This gave rise to the Chevrolet...
Suspension A clutch is a mechanical device which engages and disengages power transmission especially from driving shaft to driven shaft. In the simplest application, clutches connect and disconnect two rotating shafts (drive shafts or line shafts). In these devices, one shaft is typically attached to an engine or other power unit (the driving member) while the other shaft (the driven member) provides output power for work. While typically the motions involved are rotary, linear clutches are also possible. In a torque-controlled drill, for instance, one shaft is driven by a motor and the other drives a drill chuck. The clutch connects the two shafts so they may be locked together and spin at the same speed (engaged), locked together but spinning at different speeds (slipping), or unlocked and spinning at different speeds (disengaged).   Single dry-clutch friction disc. The splined hub is attached to the disc with springs to damp chatter. Friction clutches ...