Turbo-compound engine

turbo-compound engine is a reciprocating engine that employs a turbine to recover energy from the exhaust gases. Instead of using that energy to drive a turbosupercharger as found in many high-power aircraft engines, the energy is instead coupled to the output to increase the total power delivered by the engine. The turbine is usually mechanically connected to the crankshaft, as on the Wright R-3350 Duplex-Cyclone, but electric and hydraulic power recovery systems have been investigated as well.

As this recovery process does not increase fuel consumption, it has the effect of reducing the specific fuel consumption, the ratio of fuel use to power.[1] Turbo-compounding was used for commercial airliners and similar long-range, long-endurance roles before the introduction of high-bypass turbofan engines replaced them in this role. Examples using the Duplex-Cyclone include the Douglas DC-7B and Lockheed L-1049 Super Constellation, while other designs did not see production use.

The Napier Nomad engine. The power-recovery turbine sits underneath a two-stroke diesel engine.


Most piston engines have a hot exhaust that still contains considerable undeveloped energy that could be used for propulsion if extracted. A turbine is often used to extract energy from such a stream of gases. A conventional gas turbine is fed high-pressure, high-velocity air, extracts energy from it, and leaves as a lower-pressure, slower-moving stream. This action has the side-effect of increasing the upstream pressure, which makes it undesirable for use with a piston engine as it has the side-effect of increasing the back-pressure in the engine, which decreases scavenging of the exhaust gas from the cylinders and thereby lowers the efficiency of the piston portion of a compound engine.[2]

Through the late 1930s and early 1940s one solution to this problem was the introduction of “jet stack” exhaust manifolds. These were simply short sections of metal pipe attached to the exhaust ports, shaped so that they would interact with the airstream to produce a jet of air that produced forward thrust. Another World War II introduction was the use of the Meredith effect to recover heat from the radiator system to provide additional thrust.

By the late-war era, turbine development had improved dramatically and led to a new turbine design known as the “blowdown turbine” or “power-recovery turbine”. This design extracts energy from the momentum of the moving air, but does not appreciably increase back-pressure. This means it does not have the undesirable effects of conventional designs when connected to the exhaust of a piston engine, and a number of manufacturers began studying the design.


Wright R-3350 Duplex-CycloneTurbo-Compound radial engine.

The first aircraft engine to be tested with a power-recovery turbine was the Rolls-Royce Crecy. This was used primarily to drive a geared centrifugal supercharger, although it was also coupled to the crankshaft and gave an extra 15 to 35 percent fuel economy.[3]

Blowdown turbines became relatively common features in the late- and post-war era, especially for engines designed for long overwater flights. Turbo-compounding was used on several airplane engines after World War II, including the Napier Nomad[4][5] and the Wright R-3350[6][7] being examples. The exhaust restriction imparted by the three blowdown turbines used on the Wright R-3350 is equal to a well-designed jet stack system used on a conventional radial engine, while recovering about 550 hp (410 kW) at METO (maximum continuous except for take-off) power.[2] In the case of the R-3350, maintenance crews sometimes nicknamed the turbine the parts recovery turbine due to its negative effect on engine reliability. Turbo-compound versions of the Napier Deltic, Rolls-Royce Crecy, Rolls-Royce Griffon, and Allison V-1710 were constructed but none was developed beyond the prototype stage. It was realized in many cases the power produced by the simple turbine was approaching that of the enormously complex and maintenance-intensive piston engine to which it was attached. As a result, turbo-compound aero engines were soon supplanted by turboprop and turbojetengines.

Some modern heavy truck diesel manufacturers have incorporated turbo-compounding into their designs. Examples include the Detroit Diesel DD15[8][9] and Scania[10] in production from 1991.[11][clarification needed]

Starting with the 2014 season, Formula 1 switched to a new 1.6 liter turbocharged V6 formula that uses turbo-compounding. The engines use a single turbocharger that is connected to an electric motor/generator called the MGU-H. On deceleration, the MGU-H acts as a generator, converting wasted mechanical energy from the turbine into electrical energy that is stored in a battery. When the car accelerates, the MGU-H acts as a motor, using the stored electrical energy to spool up the turbine, eliminating lag.

List of types

Diagram showing a true turbo-compound at the bottom, and a gas turbine loosely coupled to a piston engine at the top

  • Detroit Diesel
    • DD15[12]
  • Napier
    • Napier Nomad
  • Wright Aeronautical
    • Wright R-3350: The turbo-compound version was the only turbo-compound aero-engine to see mass production and widespread usage.
  • Dobrynin
    • Dobrynin VD-4K
  • Zvezda
    • Zvezda M503: Soviet-built 42 cylinder diesel naval engine used in the Osa-class missile boat
  • Renault
    • Renault Energy F1: 1.6 liter turbocharged V6 engine built for Formula 1. Unlike its contemporaries, still uses a wastegate as an emergency measure to control boost pressure in case the turbo-compounding with the MGU-H fails.
  • Ferrari
    • Ferrari 059: 1.6 liter turbocharged V6 engine built for Formula 1 for the Ferrari F14 T as well as the Sauber C33.
  • Mercedes-Benz
    • Mercedes PU106: 1.6 liter turbocharged V6 engine built for Mercedes-Benz Formula 1 programme.
  • Honda
    • Honda RA615H: 1.6 liter turbocharged V6 engine built for Formula 1 for the McLaren MP4-30.


  1. Stimson, Thomas E., Junior (February 1956). “The Race of the Airliners”. Popular Mechanics: 113–118. Retrieved 19 February 2016.
  2. a b Facts about the Wright Turbo Compound (pdf). Wood Ridge New Jersey: Curtiss-Wright Corporation:Wright Aeronautical Division. October 1956. Retrieved 19 February2016.
  3. “Rolls-Royce and the Sleeve Valve” (PDF). New Zealand Rolls-Royce & Bentley Club Inc (07-3): 15. 2007.
  4. Gunston, Bill (30 April 1954). “Napier Nomad: An engine of outstanding efficiency”(PDF). Flight: 543–551. Retrieved 19 February 2010.
  5. E. E. Chatterton (22 April 1954). “Napier Diesels: An RAeS Lecture” (PDF). Flight: 552. Retrieved 19 February 2010.
  6. “Ten Ideas That Failed: 2 Turbo-compound Piston Engine” (PDF). Flight. 16 December 2003. Retrieved 19 February 2010.
  7. “Super Survivor” (PDF). Flight. 18 June 1997. Retrieved 19 February 2010in its hey-day, the Connie was often called the world’s best tri-motor
  8. “DD15” (video). Detroit Diesel.
  9. “DD15 Brochure” (pdf). Detroit Diesel.
  10. “Scania Turbocompound”. Scania Group.
  11. “Scania produces 4 ECO-point engine from Oct 2001”. Scania Group. With 440 hp, the new version of Scania’s 12-litre turbocompound engine is suitable for Alpine terrain, as well as normal European long-haul and construction operations.
  12. “The Turbo Compounding Boost”. 2007.
Engine braking Engine braking occurs when the retarding forces within an engine are used to slow a vehicle down, as opposed to using additional external braking mechanisms such as friction brakes or magnetic brakes. The term is often confused with several other types of braking, most notably compression-release braking or "jake braking" which uses a different mechanism. Traffic regulations in a large number of countries require trucks to always drive with an engaged gear, which in turn provides a certain amount of engine braking (viscous losses to the engine oil and air pumped through the engine and friction losses to the cylinder walls and bearings) when no accelerator pedal is applied. Type Gasoline engines The term "engine braking" refers to the braking effect that occurs in gasoline engines when the accelerator pedal is released. This results in the throttle valve that controls intake airflow closing and the air flow through the intake becoming greatly restricted (but not cut off complet...
Tunnel crankcase A tunnel crankcase, tunnel crankshaft or disc-webbed crankshaft engine is a diesel engine where the crankshaft is designed so that the main bearings (the bearings that support the crankshaft within the crankcase) are enlarged in diameter, such that they are now larger than the crank webs (the radial arms that link the big end bearings to the main bearings). They thus form the largest diameter of any part of the crankshaft. Rather than a conventional crankcase that has webs across it to support the narrow bearings of a conventional crankcase, the crankcase now has a large tunnel through it, hence the name. Tunnel crankcases appeared in the 1930s with the first high-speed diesel engines. They were favoured by some makers more than others, notably Saurer in Switzerland and Maybach-Motorenbau GmbH (now MTU) Friedrichshafen. They are described as both 'tunnel crankcases' and 'roller bearing cranks'; the two aspects are related and it is unclear as to which gave rise to the other. Origin...
V6 engine A V6 engine is a V engine with six cylinders mounted on the crankshaft in two banks of three cylinders, usually set at either a 60 or 90 degree angle to each other. The V6 is one of the most compact engine configurations, usually ranging from 2.0 L to 4.3 L displacement (however, much larger examples have been produced for use in trucks), shorter than the inline 4 and more compact than the V8 engine. Because of its short length, the V6 fits well in the widely used transverse engine front-wheel drive layout. A V6, 24-valve, DOHC engine Applications The V6 is commercially successful in mid-size cars in the modern age because it is less expensive to build and is smoother in large sizes than the inline 4,  which develops increasingly serious vibration problems in larger engines. The wider 90° V6 will fit in an engine compartment designed for a V8, providing a low-cost alternative to the V8 in an expensive car, while the narrower 60° V6 will fit in most engine compartments designed...
Cam A cam is a rotating or sliding piece in a mechanical linkage used especially in transforming rotary motion into linear motion. It is often a part of a rotating wheel (e.g. an eccentric wheel) or shaft (e.g. a cylinder with an irregular shape) that strikes a lever at one or more points on its circular path. The cam can be a simple tooth, as is used to deliver pulses of power to a steam hammer, for example, or an eccentric disc or other shape that produces a smooth reciprocating (back and forth) motion in the follower, which is a lever making contact with the cam. Fig. Animation showing rotating cams and cam followers producing reciprocating motion. Elliptical disk cam with oscillating follower. Overview The cam can be seen as a device that rotates from circular to reciprocating (or sometimes oscillating) motion. A common example is the camshaft of an automobile, which takes the rotary motion of the engine and translates it into the reciprocati...
Crankcase A crankcase is the housing for the crankshaft in a reciprocating internal combustion engine. The enclosure forms the largest cavity in the engine and is located below the cylinder(s), which in a multicylinder engine is usually integrated into one or several cylinder blocks. Crankcases have often been discrete parts, but more often they are integral with the cylinder bank(s), forming an engine block. Nevertheless, the area around the crankshaft is still usually called the crankcase. Crankcases and other basic engine structural components (e.g., cylinders, cylinder blocks, cylinder heads, and integrated combinations thereof) are typically made of cast iron or cast aluminium via sand casting. Today the foundry processes are usually highly automated, with a few skilled workers to manage the casting of thousands of parts. A crankcase often has an opening in the bottom to which an oil pan is attached with a gasketed bolted joint. Some crankcase designs fully surround the crank's main bear...