Uniform Tire Quality Grading

Uniform Tire Quality Grading, commonly abbreviated as UTQG, is the term encompassing a set of standards for passenger car tires that measures a tire’s treadwear, temperature resistance and traction. The UTQG was created by the National Highway Traffic Safety Administration in 1978, a branch of the United States Department of Transportation (DOT). All tires manufactured for sale in the United States since March 31, 1979 are federally mandated to have the UTQG ratings on their sidewall as part of the DOT approval process, in which non-DOT approved tires are not legal for street use in the United States.[1] It is not to be confused with the tire code, a supplemental and global standard measuring tire dimensions, load-bearing ability and maximum speed, maintained by tire industry trade organizations and the International Organization for Standardization.

The National Highway Traffic Safety Administration (NHTSA) established the Uniform Tire Quality Grading Standards (UTQGS) in 49 CFR 575.104.[2] When looking at UTQG ratings it is important to realize that the Department of Transportation does not conduct the tests. The grades are assigned by the tire manufacturers based on their test results or those conducted by an independent testing company they have hired. The NHTSA has the right to inspect the tire manufacturer’s data and can fine them if inconsistencies are found. [3]

Dedicated winter tires, also known as snow tires, are not required to have a UTQG rating.[4] Non-passenger car tires, such as those for motorcycles, buses, medium trucks and above along with trailers are also not required to have a UTQG rating, although FMVSS Standard 109 requires the following to be listed on the tire’s sidewall: speed restriction if less than 55 mph, regroovable if designed for regrooving, and a letter designating load range rating.[5]

UTQG ratings (top) and tire code(bottom) on sidewall of Continental ContiProContact tire

Components

The UTQG rating is made up of three components, treadwear, traction and temperature.

Treadwear

The treadwear grade is a comparative rating based on the wear rate of the tire when tested under controlled conditions on a specified government test track. A tire graded 200 would last twice as long on the government test course under specified test conditions as one graded 100. In theory, this means that a tire with a 200 grade will wear twice as long as a tire with a 100 grade. However, tire manufacturers are not under any obligation to grade a tire based on the test results, except to say that they cannot overstate the grade. This is enforced by NHTSA requiring documentation to justify any assignment of a grade on a tire, “These treadwear grades are no guarantee of actual tire mileage; differences in driving habits, service practices, climate, and road characteristics will affect a tire’s longevity.”

As Course Monitoring Tires have changed, their treadwear grades have changed to numbers considerably higher than 100. As a result, it would be incorrect to say that a tire with a treadwear grade of 200 gets twice the life of the Course Monitoring Tire.

Methodology

The wear on tires that are being tested (“candidate tires”) is compared to the wear of Course Monitoring Tires (CMT), which are sold by the NHTSA at its UTQG test facility in San Angelo, Texas. Both types of tires are mounted on vehicles that will be driven in a convoy during the test, thus ensuring that the candidate tires and the CMT tires experience the same road conditions. The convoy, typically comprising four or fewer vehicles, will drive 7200 miles on public roads in West Texas. Candidate tire wear will be checked during and after the test, and compared to the wear on the CMT tires from the same convoy.

The first CMTs were commercially-available Goodyear Custom Steelguards, and Goodyear Tire and Rubber Company produced all CMT tires from 1975 until 1984. From 1984 to 1991, the CMT tires were produced by Uniroyal. CMT tires are now “specially designed and built to American Society for Testing and Materials (ASTM) standard E1136 to have particularly narrow limits of variability.” 1.

Relation to friction coefficient

The average friction coefficient (µ) is related to the tire’s Treadwear rating by the following formula:[6]

A lower treadwear rating indicates a higher friction coefficient and thus provides a shorter braking distance. A softer, more sticky tire, wears off its material faster to provide this performance.

Limitations

Notice that the treadwear grade is a ratio and not a mileage. This is because multiple factors determine treadwear rates and most of them are a function of driving conditions and operating environment, and not the tire itself. As a result, actual tire wear will vary considerably within the same tire line. However, two tires with exactly the same compound should have a treadwear rating that varies in accordance with tread depth.

The assigning of UTQG grades is done solely by the tire manufacturer. In many cases, this has resulted in the UTQG grading system to be more of a marketing tool than was originally intended.

It is legal and permissible for a tire manufacturer to give a particular tire line a lower treadwear grade. For example, if the highest treadwear grade in a manufacturer’s lineup is 600, then a tire line with a lower treadwear test result might receive a grade of 400, instead of the 480 it could possibly receive.

Also, it is common for tires whose treadwear grade is of little commercial value, such as racing tires, to be assigned extremely low values – sometimes even zero.

Traction

Traction grades, from highest to lowest, are AA, A, B and C. They represent the tire’s ability to stop on wet pavement as measured under controlled conditions on specified government test surfaces of asphalt and concrete. The testing does not take into account cornering, hydroplaning, acceleration or stopping on a dry surface. Nor does it account for the significantly different effectiveness of ABS versus non-ABS braking systens on a tire’s stopping distance.

The UTQGS traction test procedure measures a tire’s coefficient of friction when it is tested on wet asphalt and concrete surfaces. The test tire is installed on an instrumented axle of a traction trailer, which is towed by a truck at 40 miles per hour (mph) over wet asphalt and concrete surfaces. The tow truck is equipped with an on-board water supply system that sprays water in front of the test tire. The brakes, from the test tire only, are momentarily locked, and sensors on the axle measure the longitudinal and vertical forces as it slides in a straight line. The coefficient of friction for the pair, test tire and surface, is then determined as the ratio of the longitudinal and vertical forces.

The UTQGS traction rating procedure specifies that the traction coefficients for asphalt and for concrete are to be calculated using the locked-wheel traction coefficient on the tire, or sliding coefficient of friction. More specifically, upon application of the brakes, the tire is subjected to shear between the wheel and the road surface, and deforms towards the rear of the vehicle. This generates a traction force to oppose the motion of the vehicle. As braking torque increases, the tire deforms more and tread elements near the rear of the contact patch with the road begin to slip rather than grip. The coefficient of friction rapidly reaches a maximum value at about 10-20 percent slip, and then declines as the longitudinal slip values increase to 100 percent, which represents a fully locked tire. The maximum coefficient of friction in the 0-100 percent slip range is termed “peak” coefficient of friction, and the lower coefficient value for the fully locked tire is termed “slide” coefficient of friction. <re f>“Consumer Tire Information Program” (PDF). NHTSA. Retrieved 7 September 2012.</ref>

Traction Grades
Grade Asphalt g force Concrete g force
AA Above 0.54 0.38
A Above 0.47 0.35
B Above 0.38 0.26
C Less Than 0.38 0.26

Temperature

The temperature grades, from highest to lowest, are A, B and C. These represent the tire’s resistance to the generation of heat at speed. Tires graded A effectively dissipate heat up to a maximum speed that is greater than 115 mph. B rates at a maximum between 100 mph and 115 mph. C rates at a maximum of between 85 mph to 100 mph. Tires that cannot grade up to C or higher cannot be sold in the US. [7]

References

  1. “UTOG CHRONOLOGY”. Rubber & Plastics News. Retrieved 6 August 2016.
  2. “49 CFR 575.104 – Uniform tire quality grading standards”. Cornell University Law School. Retrieved 6 August 2016.
  3. “Uniform Tire Quality Grade Standards”. www.best-tire-review.com. Retrieved 2016-11-16.
  4. “Understanding the UTQG car tire-grading system”. Consumer Reports. Retrieved 6 August 2016.
  5. Weiss, Sandra. “http://www.nhtsa.gov/cars/rules/regrev/evaluate/807805.html“. NHTSA.
  6. See HPwizard on Tire Friction.
  7. “Tire Tech Information: UTQG”. TireRack.com. Retrieved 23 April 2013.
Run-flat tire A run-flat tire is a pneumatic vehicle tire that is designed to resist the effects of deflation when punctured, and to enable the vehicle to continue to be driven at reduced speeds - under 56 mph (90 km/h) - and for limited distances - generally between 10 mi (16 km) to 50 mi (80 km), depending on the type of tire. Cutaway model of MOWAG Piranha tire Technologies There are three basic technologies currently available, described below. Self-supporting The origins of the commercial self-supporting run-flat tire started in 1935 with a tire that had a fabric inner tire. The tire was advertised as a protection against blow outs, a common and dangerous occurrence in the 1930s. In 1934, Michelin introduced a tire that was based on technology developed for local commuter trains and trolleys. It had a safety rim inside the tire which if punctured would run on a special foam lining. The tire was sold for military use and for specialized vehicles like bank armoured cars. It was adve...
Tire-pressure monitoring system A tire-pressure monitoring system (TPMS) is an electronic system designed to monitor the air pressure inside the pneumatic tires on various types of vehicles. TPMS report real-time tire-pressure information to the driver of the vehicle, either via a gauge, a pictogram display, or a simple low-pressure warning light. TPMS can be divided into two different types – direct (dTPMS) and indirect (iTPMS). TPMS are provided both at an OEM (factory) level as well as an aftermarket solution. The target of a TPMS is avoiding traffic accidents, poor fuel economy, and increased tire wear due to under-inflated tires through early recognition of a hazardous state of the tires. History Initial adoption Due to the influence tire pressure has on vehicle safety and efficiency, tire-pressure monitoring (TPM) was first adopted by the European market as an optional feature for luxurypassenger vehicles in the 1980s. The first passenger vehicle to adopt TPM was the Porsche 959 in 1986, using a hollow spoke...
Central tire inflation system A central tire inflation system (CTIS) is a system to provide control over the air pressure in each tire of a vehicle as a way to improve performance on different surfaces. For example, lowering the air pressure in a tire creates a larger area of contact between the tire and the ground and makes driving on softer ground much easier. It also does less damage to the surface. This is important on work sites and in agricultural fields. By giving the driver direct control over the air pressure in each tire, maneuverability is greatly improved. Another function of the CTIS is to maintain pressure in the tires if there is a slow leak or puncture. In this case, the system controls inflation automatically based on the selected pressure the driver has set. Tractor-drawn trailer with CTIS Tatra T813 prototype had CTIS already in 1960, it later became standard for all Tatra military trucks CTIS is extensively used in many off-road transport operations....
Tire manufacturing Pneumatic tires are manufactured according to relatively standardized processes and machinery, in around 455 tire factories in the world. With over 1 billion tires manufactured worldwide annually, the tire industry is the major consumer of natural rubber. Tire factories start with bulk raw materials such as synthetic rubber (60% -70% of total rubber in the tire industry), carbon black, and chemicals and produce numerous specialized components that are assembled and cured. This article describes the components assembled to make a tire, the various materials used, the manufacturing processes and machinery, and the overall business model. The tire is an assembly of numerous components that are built up on a drum and then cured in a press under heat and pressure. Heat facilitates a polymerization reaction that crosslinks rubber monomers to create long elastic. Inner liner The inner liner is an extruded halobutyl rubber sheet compounded with additives that result in low air perme...
Tire code Automobile tires are described by an alphanumeric tire code (in American English and Canadian English) or tyre code (in British English, Australian English and others), which is generally molded (or moulded) into the sidewall of the tire. This code specifies the dimensions of the tire, and some of its key limitations, such as load-bearing ability, and maximum speed. Sometimes the inner sidewall contains information not included on the outer sidewall, and vice versa. The code has grown in complexity over the years, as is evident from the mix of SI and imperial units, and ad-hoc extensions to lettering and numbering schemes. New automotive tires frequently have ratings for traction, treadwear, and temperature resistance (collectively known as The Uniform Tire Quality Grade (UTQG) ratings). Most tires sizes are given using the ISO Metric sizing system. However, some pickup trucks and SUVs use the Light Truck Numeric or Light Truck High Flotation system. National technical standards...